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Abstract: The recent technological advances in remote sensing (e.g., unmanned aerial vehicles, digital
image acquisition, etc.) have vastly improved the applicability of image velocimetry in hydrological
studies. Thus, image velocimetry has become an established technique with an acceptable error
for practical applications (the error can be lower than 10%). The main source of errors has been
attributed to incomplete intrinsic and extrinsic camera calibration, to non-constant frame rate and to
spurious low velocities due to moving objects that are irrelevant to the streamflow. Some researchers
have even employed probabilistic approaches (Monte Carlo simulations) to analyze the uncertainty
introduced during the camera calibration procedure. On the other hand, the endogenous uncertainty
of the image velocimetry algorithms per se has received little attention. In this study, a probabilistic
approach is employed to systematically analyze this uncertainty. It is argued that this analysis
may not only improve the performance of the image velocimetry methods but it can also provide
information regarding the impact of the video recording conditions (e.g., low density of features,
oblique camera angle, low resolution, etc.) on the accuracy of the estimated values. The suggested
method has been tested in six case studies of which the data have been previously made publicly
available by independent researchers.

Keywords: image velocimetry; endogenous uncertainty; Monte Carlo simulations; spurious veloci-
ties filtering

1. Introduction

It has been more than forty years since the scientific field of computer vision expanded
to include motion detection applications. At its core, motion detection is a ‘correspondence
problem’, i.e., to identify the same distinct feature in two images at different times [1].
Fluid mechanics was one of the first fields to which motion detection was applied. In 1984,
Adrian [2] employed a pulsed laser to measure, in laboratory conditions, 2D fluid velocity
fields. He named this method particle image velocimetry (PIV). Nevertheless, it took some
time for image velocimetry to be applied in field conditions. Fujita et al. [3] adapted the
PIV method for measuring the velocity field in large water bodies and introduced the
large-scale particle image velocimetry (LSPIV). Various other image velocimetry methods
were subsequently suggested, such as the space-time image velocimetry (STIV) [4], the optical
tracking velocimetry [5], the Kande–Lucas–Tomasi image velocimetry [6], etc.

The simplicity and the capabilities of image velocimetry have attracted scientific
interest and a set of studies has supported its value in various hydrological applications,
e.g., the estimation of flood discharge via crowdsourced videos [7], automated systems for
continuous flood flow measurements [8], earth observation techniques [9], etc. As image
velocimetry became an established technique, various researchers conducted studies on
its accuracy in order to provide prior estimates of the errors and guidelines to minimize
them. For example, in the study of Muste et al. [10], the mean LSPIV velocities were 13%
lower than the reference values in two out of the four nodes of a cross-section and were
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almost equal in the remaining two (see Figure 7b in their study). Furthermore, in the
study of Fujita [11], the STIV velocities obtained from the video recorded by camera B
(he employed two cameras, B and C, on the visible spectrum and one camera, A, on the
infrared) were, on average, 13% lower than the reference values, whereas the velocities
from camera A deviated only slightly from the reference values. Then, Le Coz et al. [12]
made an indirect comparison between LSPIV velocities and acoustic Doppler current profiler
(ADCP) depth-averaged velocities and found the LSPIV velocities to be slightly higher,
with an overall deviation of less than 10% throughout the cross-section (see Figure 10 in
their study). Finally, in the study of Tauro et al. [5], the estimated velocities with PIV were,
on average, 30% lower than the current-meter measurements that capture velocities right
below the water surface, whereas the velocities obtained with particle tracking velocimetry
were 13% higher (see Figure 10a in their study).

The variety of the patterns of the image velocimetry errors manifests the involvement
of multiple uncertainty sources. Detert [13] has conducted an extensive study and con-
cluded that most of these errors are attributed to poor intrinsic (e.g., barrel distortion) and
extrinsic camera calibration (bad scaling, i.e., ground sampling distance), non-constant
frame rates, and spurious vectors that were not filtered out (i.e., misleading small vectors
because of either smooth water surfaces or moving objects such as shrubs on a windy
day). Le Coz et al. [14] have studied the error introduced by the uncertainty of the image
orthorectification procedure (i.e., the intrinsic and extrinsic calibration) by employing
Monte Carlo simulations. They have found that the contribution of the orthorectification
uncertainty to the total variance of the estimated discharge can range from 45% to 15%,
with a parallel effect on the total variance, when the number of ground reference points
ranges from 3 to 19.

The previous errors stem from either the preparatory works (fieldwork and preprocess-
ing of data before applying the image velocimetry algorithm) or from misleading signals
occurring naturally in the video footage (e.g., shrubs, submerged moving macrophytes,
etc.). In addition to the previously mentioned exogenous sources, there is also endogenous
uncertainty in the image velocimetry algorithms. One of the most important sources of
endogenous uncertainty is the tuning of the parameters related to the sensitivity of the
algorithms. For example, intensity capping [15] has been used by many researchers to
improve image velocimetry performance. Detert [13] has employed this filter in Brenta
Creek (Roncegno, Italy) and pixels of grayscale intensity darker than 64 were set to zero.
Detert does not explain how this ‘64’ was obtained but provides a general guideline in
the Discussion section of “Keep records of selected values and conduct sensitivity tests
and visual check”. In another example, Pearce et al. [16] conducted a more systematic
investigation before selecting the optimum value of the interrogation area (IA) size (The size
of the rectangular region of a frame where the ‘correspondence problem’ is applied). They
performed a sensitivity analysis of the LSPIV results on the IA size and selected the size
with which the results were closest to the median of all trials.

Apparently, the common practice for handling the uncertainty of image velocimetry
parameters is to perform some kind of trial and error, to keep the values that achieved the
best performance and then to discard the rest of the results assuming that they contain
no useful information. In this study, in contrast to the manual trial-and-error approach,
it is suggested to employ Monte Carlo simulations for automation and systematization
of this procedure. Furthermore, in contrast to the established techniques that eliminate
the obviously faulty simulations, it is argued that the results of all simulations contain
useful information, which can be extracted to obtain both better estimations of the surface
velocities, by filtering out spurious values, and a better insight into the uncertainty structure
of these estimations. This concept was tested in six different case studies (Kolubara River,
Castor River, La Morge River, Murg River, Salmon River and Thalhofen River) of which
the data have been made publicly available by other researchers [16–18].
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2. Materials and Methods

In this section, the Monte Carlo simulations and how they were applied to study the
impact of the uncertainty of the Free-LSPIV parameters are described. Then, the filters that
can be employed to improve the accuracy of the estimated surface velocities are presented.
Finally, the metrics that were used to evaluate the performance of the suggested filtering
are defined.

2.1. Free-LSPIV Parameters and Monte Carlos Simulations

In this study, Free-LSPIV has been used [19,20], but the findings apply to any image
velocimetry method that employs parameters that influence the sensitivity of the algorithm.
Free-LSPIV was developed with hydrometric applications in mind. For this reason, Free-
LSPIV detects displacements in any direction, but the detection takes place along a single
line. This line is the cross-section where the discharge is to be measured. The centers of
the IAs lie on this line. The number of IAs employed in each case study depends mainly
on the spatial density of the available measurements and the width of the cross-section.
The origins of the estimated velocity vectors are assigned to the centers of the IAs.

Free-LSPIV has three parameters that influence its sensitivity: the contrast threshold,
the minimum acceptable cross-correlation and the IA size. The contrast threshold is a parameter
of a pre-processing filter that is similar to the intensity capping. The minimum acceptable
cross-correlation is a parameter/threshold of a post-processing filter that rejects estimated
displacements if the cross-correlation of the corresponding pixels in two successive frames
is lower than this threshold.

Another parameter that is used to filter the results is the maximum acceptable ve-
locity, Vup. However, this parameter does not influence the sensitivity and reasonable
values can be easily selected. This parameter is also used to define the area to search
in the following frame for possible matches of the features in the IA of a leading frame
(see Equation (7.30) in [1]). Thus, the rejection of infeasible high velocities is hardwired
into the algorithm.

For each one of the three studied parameters, a set of six synthetic values was created
with a custom triangular random number generator [20]. The triangular distribution has
three parameters: the plausible minimum, the plausible maximum and the most likely value
of a variable [21]. These parameters for the contrast threshold, the minimum acceptable
cross-correlation and the IA size were (0.3, 1.0, 0.6), (0.4, 1.0, 0.6) and (30 × 30, 120 × 120,
60 × 60), respectively, for all cases studies except for La Morge River where the average
size of features was quite large; thus, the selected triangular distribution parameters for
the IA size were (45 × 45, 180 × 180, 90 × 90). For each case study, the Cartesian product
of the three sets of six values each generated 216 triplets of parameters that were used
in Free-LSPIV to obtain 216 estimates of profiles of surface velocities along the cross-
section. From those 216 profiles, the profiles V95, V50 and V05 (i.e., the velocities along the
cross-section that at each location are greater than 95%, 50% and 5% of the corresponding
216 velocities) were obtained. It should be noted that it is not guaranteed that every single
profile out of the 216 has non-null velocity values at all IA centers (null is not zero; null
is no detection). In order to characterize the overall uncertainty of the estimated surface
profile, the following metric was introduced:

ω =
〈V95〉 − 〈V05〉
〈V50〉

(1)

where 〈V95〉, 〈V50〉 and 〈V05〉 are the mean values of V95, V50 and V05, respectively. The larger
this ratio, the wider the confidence interval becoms and, hence, the higher the uncertainty.

2.2. Filtering

We argue that V50 is the optimum estimate of the surface velocities and it can be
further improved by applying the following three filters:
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1. Velocity estimates are deemed invalid (and removed from the V50 profile) at the IA cen-
ters where the number of the detected velocities is less than half of the total number of
the Monte Carlo simulations. Ideally, after the Monte Carlo simulations, 216 velocities
values should be obtained at each IA center. However, it is not guaranteed that this
will always be the case. The lower the number of the detected velocities, the lower the
confidence on the confidence intervals. For example, if Free-LSPIV detects velocity at
a specific IA center with only one out of the 216 triplets, then the confidence interval
width at this location would be zero, despite the actual uncertainty being very high at
this location.

2. Velocity estimates V50 are deemed invalid at the IA centers where the V95 − V05 >
1.2(〈V95〉 − 〈V05〉). This condition excludes the estimates at the locations where the
confidence interval width is greater than the average width by 20%. This value
was selected after an initial investigation. Considering V95 −V05 a random variable,
the value 1.2(〈V95〉 − 〈V05〉) was found to correspond to percentiles ranging from
66% (for La Morge River, which has ω = 1.68, i.e., 34% of V50 are discarded) to 89%
(for Kolubara River, which has ω = 0.57). Therefore, it seems that this filter tends
to become tighter in wider confidence intervals, which translates into more strict
filtering in the cases with increased uncertainty, which is the desired behaviour.

3. Velocity estimates at the banks that are deemed invalid by the previous filter are
replaced by the corresponding V05 value. That is, if the previous condition holds at
any of the IA centers closest to the banks, then the optimum estimate at this location
is considered to be V05 instead of V50. The concept behind this choice is the expected
lower streamflow velocities at banks due to friction.

2.3. Reference Values and Error Metrics

The flow in the Kolubara River, Castor River, Murg River and Thalhofen River was
measured with ADCP. In the ADCP method, acoustic transducers are mounted onto a
boat facing vertically downwards in order to obtain the flow velocities along a vertical.
This is repeated for multiple verticals at different locations. ADCP technical limitations
(blanking distance and transducer draft) prevented measurements of flow velocity near the
water surface and near the bottom [22]. The flow in the Salmon River was measured with a
traditional current meter at the depth-positions of 0.8, 0.6 and 0.2 at each vertical. The flow
in the La Morge River was measured with a handheld acoustic Doppler velocimeter at the
depth-position of 0.6 at each vertical.

In ADCP, the discharge from each bin (A bin is the area corresponding to a single flow
velocity measurement) is calculated with the following formula [23]:

Qbin = |vw × vb|dtdz (2)

where vw is the measured vector of the streamflow velocity, vb is the vector of the boat
velocity, dt is the time between ensembles (An ensemble is a single profile of the water
velocity through the water column consisting of one or the mean of multiple transducer
pings) and dz is the vertical dimension of the bin. Aggregating Qbin over the river cross-
section provides the total discharge:

Q =
nb

∑
i=1

Qbini (3)

where Qbini is the discharge through the ith bin and nb is the number of bins of the cross-section.
In conventional measurements, the mean velocity of a vertical vm is calculated from

the velocities at positions 0.8, 0.6 and 0.2 of the vertical with the following equation.

vm =


v0.8+2v0.6+v0.2

4 , if measurements are at 0.2, 0.6 and 0.8 of depth

v0.6, if measurements are only at 0.6 of depth
(4)
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The total discharge can be obtained by integrating vm over the river cross-section:

Q =
nv

∑
i=1

aivmi (5)

where ai is the area corresponding to the ith vertical of the measured cross-section and nv
is the number of the verticals.

LSPIV, similar to any image velocimetry method, yields only surface flow velocities
Vs. For this reason, some method must be employed to link the surface velocity to the
mean velocity of each vertical. In this study, the simple method of the constant velocity
coefficient (see Section 5.3.9 in [22]) has been used.

vm = 0.85Vs (6)

Note, however, that hydraulic analysis shows this coefficient to be variable. It is a
function of the momentum distribution coefficient β that depends on the cross-sectional
geometry and the bed’s relative roughness [24]:

β =
1

A〈v〉2
∫

v2dA (7)

where A is the cross-sectional area and 〈v〉 is the mean cross-sectional velocity.
The discharge estimated from Equations (5) and (6) setting Vs = V50 is Q50. The relative

error of Q50 against the reference value was obtained with the following formula.

ε50 =
Q50 −Qref

Qref
(8)

The discharge estimated after filtering of the V50 is Qf, and its relative error was
obtained with the following formula.

εf =
Qf −Qref

Qref
(9)

This study focused exclusively on the error of the estimated surface velocity by image
velocimetry (i.e., exclude from Equations (8) and (9) the error due to the rough estimation of
Q50 and Qf via Equation (6)). For this reason, Qref was not the best estimate of the discharge
that can be obtained from ADCP or current meter measurements. In the case of ADCP,
Qref was obtained from Equations (5) and (6) instead of Equation (3). In Equation (6),
the surface velocity Vs was taken equal to the measured streamwise velocity component
closest to the water surface. In the case of the current meter and the handheld acoustic
Doppler velocimeter, Qref was calculated from Equations (4) and (5) as usual. However,
the surface velocity Vs, which was used in the plots for visual comparison, was estimated
from Equation (6).

3. Results

In this section, the application of the suggested methodology to six different case
studies is described.

3.1. Kolubara River

Kolubara River is located in Central Serbia. The width of the surface of the river is
approximately 21 m and the maximum depth is 1.9 m. The mean flow velocity is 0.14 m/s
and the discharge measured with ADCP is 3.4 m3/s [16].

The surface velocity Vs of cross-section S1 of Kolubara River has been estimated by
Pearce et al. [16] from the ADCP measurements with the extrapolation of characteristic
velocity depth profiles. The video footage was recorded from a UAS hovering 26 m above
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the river surface. Before video recording, artificial seeding material was distributed evenly
across the river surface (Figure 1).

Figure 1. Extracted frame from VideoA.avi [16].

In this study, their video with the filename VideoA.avi was used, which has a duration
of 25 s, resolution 3696 × 4994, frame rate 24 Hz and has been stabilized and orthorectified
at a ground sampling distance of 0.01 m/px. The video was sub-sampled at 4 Hz because,
according to Pearce et al. [16], this frequency exhibited the best sensitivity analysis scores
for LSPIV. The ADCP measurements at cross-section S1 (Figure 1) were used to evaluate
the performance of the Monte Carlo simulations and filters. In order to geo-reference the
frames, the coordinates of three ground control points are related to the corresponding co-
ordinates in the image. The ground control points with coordinates (8.77 3.57), (15.96 3.60),
(26.00 30.19) correspond to the pixels (1341 1002), (1335 1717) and (3988 2700) of the frames.
The velocity that corresponds to 1 px displacement of a feature between two successively
processed frames is 0.04 m/s.

The centers of the IAs of Free-LSPIV were aligned relative to the line of the ADCP
boat motion (see ‘S1’ in Figure 6 of Pearce et al. [16] and in Figure 1 below). The Free-LSPIV
configuration was the following: sub-sampling = 1/6; Vup = 0.5 m/s; number of IAs = 40;
projection = ‘similarity’.
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Figure 2 displays the 90% confidence intervals of the surface velocities along the
cross-section S1, the surface velocities after filtering and the corresponding ADCP Vs
measurements (obtained from Figure 8 of [16]). The ratio ω is 0.57.

According to Figure 2, the filtered velocities are relatively good estimates of the surface
velocities at this cross-section. This estimation is slightly better than the LSPIV profile
given by Pearce et al. [16] in their Figure 8A. The reference discharge is Qref = 2.75 m3/s.
The estimated discharge obtained from the unfiltered velocities (the 50% points in Figure 2)
is Q50 = 2.39 m3/s, which is 13% lower than the reference discharge. The estimated
discharge obtained from the filtered velocities (the continuous red line in Figure 2) is
Qf = 2.39 m3/s, which is 13% lower than the reference discharge.

Figure 2. Confidence intervals of the surface velocities along cross-section S1 of Kolubara River
(video frame rate 24/6 = 4 Hz).

3.2. Castor River

The Castor River is located in Eastern Ontario, Canada. The width of the surface of the
river at the location of the hydrometric survey is 23 m. The mean flow velocity is 1.3 m/s,
the river’s maximum depth is 1.19 m and the discharge is 30.5 m3/s [17].

Perks et al. [17] have made the ADCP measurements that they made on the 10 April
2019 at 11:22:39 and the frames of the video that they recorded on the same day at 11:25:00
publicly available. The video presents a significant density of distinct features (reflections
from ripples). The original video was recorded from a height of 5 m above the left bank
(looking downstream) at an oblique angle of 57° from the nadir, with a resolution of
2688 × 1520 px and a frame rate of 20 Hz.

Perks et al. [17] have made publicly available 540 frames with ID numbers ranging
from 00051 to 00590 (the first 50 frames of the video were withheld because they suffered
compression issues). The frames have been orthorectified at a ground sampling distance
of 0.01 m/px with a resolution of 4515 × 6063. The size of the file of each frame is 2 MB,
whereas the size that each frame occupies in computer memory is 27 MB. In order to
achieve high computational speed for the Monte Carlo simulations, all frames need to be
loaded simultaneously in the computer memory instead of being accessed sequentially
from the storage device. For this reason and because of memory constraints, only the first
40 frames with the ids from 00051 to 00090 were used in our study. In order to geo-reference
the frames, the projection ‘non-reflective similarity’ was selected. The coordinates of the
two first pixels on the diagonal of a frame, (1 1) and (2 2), are assumed to correspond
to coordinates (0 0) and (0.01 0.01) in the real world (displacement of 1 pixel equals the
ground sampling distance, which is 0.01 m/px). The velocity that corresponds to 1 px
displacement of a feature between two successively processed frames is 0.2 m/s.

The centers of the IAs of Free-LSPIV were aligned to the line of the ADCP boat
motion (see the wire in Figure 3). The coordinates of this line were obtained from
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the file Reference_Castor_002.xlsx, which is included in the publicly available data
of Perks et al. [17]. The Free-LSPIV configuration was the following: sub-sampling = 1;
Vup = 4 m/s; number of IAs = 40; projection = ‘non-reflective similarity’.

Figure 3. Frame 00051 of Castor River video [17].

Figure 4 displays the 90% confidence intervals along the cross-section of the ADCP
path, the filtered velocities and the corresponding ADCP Vs measurements (Vs taken
equal to the measurements made at 0.17 m below the water surface, available from the file
Reference_Castor_002.xlsx). The ratio ω for the 40 frames (with ids 51, 52,. . . , 90) is 1.13.

According to Figure 4, the filtered velocities estimate the velocity profile very well.
This performance can be attributed to the high seeding density with distinct natural features.
The reference discharge is Qref = 28.51 m3/s. The estimated discharge obtained from the
unfiltered velocities (the 50% points in Figure 4) is Q50 = 29.44 m3/s, which is 3% higher
than the reference discharge. The estimated discharge obtained from the filtered velocities
is Qf = 28.94 m3/s, which is 2% higher than the reference discharge.
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Figure 4. Confidence intervals of the surface velocities along ADCP path in Castor River (frames 51,
52, . . . , 90).

3.3. La Morge

The La Morge River is located in Southern France. The width of the surface of the
river at the location of the hydrometric survey is 7.2 m. The mean flow velocity is 0.39 m/s,
the maximum depth is 0.61 m and the discharge is 1.32 m3/s [17].

Perks et al. [17] have made publicly available the current-meter measurements made
on 11 October 2018 and the video that was recorded on the same day. The video is
characterized by a significant density of large and distinct artificial seeding materials (corn
chips), which, however, are concentrated in the middle of the cross-section (Figure 5).
The original video was recorded from a camera attached to the edge of a three-meter-long
mast on the right bank. The original video has a resolution of 640 × 480, a frame rate of
5 Hz and a duration of 10 s (48 frames in total).

Figure 5. Extracted frame of the La Morge River video [17].

The publicly available video has been stabilized and orthorectified at a ground sam-
pling distance of 0.01 m/px. The resolution of the orthorectified video is 1550 × 950 with
a frame rate of 5 Hz. In order to geo-reference the video, the ‘non-reflective similarity’
projection was selected. The coordinates of the two first pixels on the diagonal of a frame,
(1 1) and (2 2), are assumed to correspond to the local coordinates (0 0) and (0.01 0.01) of
the real world. The velocity that corresponds to 1 px displacement of a feature between
two successively processed frames is 0.05 m/s.
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The centers of the IAs of Free-LSPIV were aligned along Transect 001 (Figure 5).
The coordinates of this line were obtained from the file Cross-Section.xlsx, which
is included in the publicly available data of Perks et al. [17]. The Free-LSPIV config-
uration was the following: sub-sampling = 1; Vup = 1.5 m/s; number of IAs = 30;
projection = ‘non-reflective similarity’.

Figure 6 displays the 90% confidence intervals along Transect 001, the filtered velocities
and the corresponding current meter measurements (not exactly measurements, but the
corresponding mean velocity, which was obtained from the file streamgauging_sheet_
midsection.xlsx, was divided by 0.85). The ratio ω is 1.49. The wide confidence interval
can be attributed to the low resolution of the video and the lack of features near the banks.

Figure 6. Confidence intervals of the surface velocities along cross-section Transect 001 of La Morge
River (video frame rate 5 Hz).

According to Figure 6, the filtered velocities estimate satisfactorily the surface veloci-
ties. The reference discharge is Qref = 1.32 m3/s. The estimated discharge obtained from
the unfiltered velocities (the 50% points in Figure 6) is Q50 = 1.18 m3/s (the depths of Tran-
sect 001 were obtained from Cross-Section.xlsx), which is 10% lower than the reference
discharge. The estimated discharge obtained from the filtered velocities (the continuous
red line in Figure 6) is Qf = 1.17 m3/s, which is 11% lower than the reference discharge.

3.4. Murg River

The Murg River is located in Northeast Switzerland. The width of the surface of the
river at the location of the hydrometric survey is 12 m. The mean flow velocity is 1 m/s,
the river average depth is 0.35 m and the discharge is 2.76 m3/s [18].

Detert et al. [18] have made publicly available the ADCP measurements made on
6 April 2016 and the frames of the video recorded on the same day. In order to enhance the
accuracy of the image velocimetry method, spruce wood chips were spread over the water
surface, which appear to be reaching the cross-section after Frame 00100. The original video
was recorded from a UAS hovering 30 m above the surface, with a resolution 4096 × 2160,
frame rate 12 Hz and a duration of 2 min 11 s, resulting in 1000 frames.

The publicly available frames have been stabilized and orthorectified at a ground
sampling distance of 0.0156 m/px. In order to geo-reference the video, the ‘non-reflective
similarity’ projection was selected. The coordinates of the two first pixels on the diagonal
of a frame, (1 1) and (2 2), are assumed to correspond to the local coordinates (0 0) and
(0.0156 0.0156) in the real world. The velocity that corresponds to 1 px displacement of a
feature between two successively processed frames is 0.19 m/s.

The centers of the IAs of Free-LSPIV were aligned along the cross-section of the
ADCP path. The coordinates of this line (see the wire in Figure 7) were obtained from
the file Reference_Data_Murg.xlsx, which is included in the publicly available data
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of Perks et al. [17]. The Free-LSPIV configuration was the following: sub-sampling = 1;
Vup = 4 m/s; number of IAs = 30; projection = ‘non-reflective similarity’.

Artificial seeding reaches the cross-section after Frame 00100. This is taken advantage
of in identifying the impact of seeding on the accuracy of the image velocimetry estimation.
For this reason, Free-LSPIV was applied separately to two ranges of frames, the first range
included the first 90 frames, whereas the second range included the 100 frames after Frame
00100. Figure 7 displays a frame from the first range, whereas Figure 8 displays a frame
from the second range.

Figure 7. Frame 00001 of Murg River [18].

Figure 8. Frame 00150 of Murg River [18].

Figure 9 displays the 90% confidence intervals for the first 90 frames along the cross-
section of the ADCP path, the filtered velocities and the corresponding ADCP Vs mea-
surements (Vs taken to be equal to the measurements made at 0.14 m below the water
surface, available from the file Reference_Data_Murg.xlsx). The ratio ω is 1.68. The wide
confidence interval reflects the low density of the features on the water surface.

According to Figure 9, the filtered velocities tend to overestimate the velocity profile.
The reference discharge is Qref = 2.64 m3/s. The estimated discharge obtained from the
unfiltered velocities (the 50% points in Figure 8) is Q50 = 3.36 m3/s, which is 27% higher
than the reference discharge. The estimated discharge obtained from the filtered velocities
(the continuous red line in Figure 9) is Qf = 3.05 m3/s, which is 16% higher than the
reference discharge.
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Figure 9. Confidence intervals of the surface velocities along the cross-section of the ADCP path in
Murg River for the frames with no artificial seeding (frames 1, 2, . . . , 90).

Figure 10 displays the 90% confidence intervals for the 100 frames after Frame 00100
along the cross-section of the ADCP path, the filtered velocities and the corresponding
ADCP Vs measurements. The ratio ω is 0.31. The high video resolutions and the good
seeding density have resulted in this low ω value.

Figure 10. Confidence intervals of the surface velocities along the cross-section of the ADCP path in
Murg River for the frames with artificial seeding (frames 100, 101, . . . , 199).

According to Figure 10, the filtered mean values of the Monte Carlo simulations
slightly overestimated the velocity profile. The reference discharge is Qref = 2.64 m3/s.
The estimated discharge obtained from the unfiltered velocities (the 50% points in Figure 10)
is Q50 = 3.17 m3/s, which is 20% higher than the reference discharge. The estimated
discharge obtained from the filtered velocities (the continuous red line in Figure 10) is
Qf = 3.06 m3/s, which is 16% higher than the reference discharge.

3.5. Salmon River

The Salmon River is located in British Columbia, Canada. The width of the surface
of the river at the location of the hydrometric survey is 59 m. The mean flow velocity is
0.65 m/s, the river’s maximum depth is 1.08 m and the discharge is 22.9 m3/s [17].

Perks et al. [17] have made publicly available the measurements made using a Flow-
Tracker handheld acoustic Doppler velocimeter on 4 June 2019 (measurements only at 60%
of the depth) and the frames of the video recorded on the same day. The water is very
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clear (features on the bottom can be easily seen) with a low density of features on the water
surface. The original video was recorded from a UAS hovering 102 m above the surface.
The original video has a resolution of 1920 × 1080 px, a frame rate of 24 Hz and a duration
of 1 min resulting in 1457 frames.

The publicly available frames have been stabilized and orthorectified at a ground
sampling distance of 0.01 m/px. These frames are offered by Perks et al. [17] at a resolution
of 16001 × 11001. This resolution requires 176 MB to store a single frame in memory
(grayscale with 1 byte per pixel). For this reason, these frames were resized to 50%, which
resulted in a ground sampling distance of 0.02 m/px and a size in memory of 44 MB.
In order to geo-reference the video, the ‘non-reflective similarity’ projection was selected.
The coordinates of the two first pixels on the diagonal of a frame, (1 1) and (2 2), were
assumed to correspond to the local coordinates (0 0) and (0.02 0.02) in the real world.
Sub-sampling to a frame rate of 6 Hz was employed. For this reason, three frames are
skipped for each frame processed. In total, 76 frames were used starting with Frame 1 and
ending with Frame 297. The velocity that corresponds to 1 px displacement of a feature
between two successively processed frames is 0.12 m/s.

The centers of the IAs of Free-LSPIV were aligned along the measured cross-section.
The coordinates of this line (see Figure 11) are provided by the file 08HD006_20190604_
velocity validation.xlsx, which is included in the publicly available data of
Perks et al. [17]. The Free-LSPIV configuration was the following: sub-sampling = 1/4;
Vup = 3 m/s; number of IAs = 40; projection = ‘non-reflective similarity’.

Figure 11. Extracted frame from Salmon River video [17].

Figure 12 displays the 90% confidence intervals along the cross-section of FlowTracker
measurement, the filtered velocities and the corresponding flow measurements (not ex-
actly measurements, but the measurements at 60% of the depth divided by 0.857, see
08HD006_20190604_velocity validation.xlsx). The ratio ω is 1.14. The confidence in-
terval becomes very wide close to the river banks because of the lack of features on the
surface at these areas.
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Figure 12. Confidence intervals of the surface velocities along the measured cross-section of Salmon
River (frames 1, 5, 9, . . . , 297).

According to Figure 12, the filtered mean values of the Monte Carlo simulations
estimate the surface velocities relatively well. The reference discharge is Qref = 22.9 m3/s.
The estimated discharge obtained from the unfiltered velocities (the 50% points in Figure 12)
is Q50 = 25.11 m3/s, which is 11% higher than the reference discharge. The estimated
discharge obtained from the filtered velocities (the continuous red line in Figure 12) is
Qf = 23.9 m3/s, which is 5% higher than the reference discharge.

3.6. River Thalhofen

River Thalhofen is located in Southern Germany. The width of the surface of the
river at the location of the hydrometric survey is 26 m. The mean flow velocity is 1.7 m/s,
the river’s maximum depth is 1.45 m and the discharge is 52.52 m3/s [17].

Perks et al. [17] have made publicly available the ADCP measurements made on
27 July 2017 and the video was recorded on the same day. The camera was fixed at the
right bank (looking downstream) with an angle of 25° from the nadir and 85° from the flow
direction. The video duration is 2 s at a resolution of 1280 × 800 px and a frame rate of
30 Hz. The water surface exhibits a good density of distinct figures (turbulence structures).
The medium resolution and the oblique camera configuration have resulted in diminished
information density at the frame areas corresponding to the more distant (from the camera)
locations (Figure 13, areas to the right side).

Figure 13. Extracted frame from River Thalhofen video [17].

The publicly available frames have been stabilized and orthorectified at a ground
sampling distance of 0.01 m/px. The coordinates of the frame pixels (2748 650) and (0 651)
are assumed to correspond to the local coordinates (2 0) and (27.92 0.01) in the real world.
The velocity that corresponds to 1 px displacement of a feature between two successively
processed frames is 0.28 m/s.

The centers of the IAs of Free-LSPIV were aligned along the cross-section of the
ADCP path. The coordinates of this line (see the wire in Figure 13) are provided by
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the file Thalhofen_Transect_0.xlsx, which is included in the publicly available data of
Perks et al. [17]. The Free-LSPIV configuration was the following: sub-sampling = 1/1;
Vup = 4 m/s; number of IAs = 40; projection = ‘non-reflective similarity’.

Figure 14 displays the 90% confidence intervals of the surface velocities along the
cross-section of the ADCP path, the filtered velocities and the corresponding ADCP Vs
measurements (Vs taken equal to the measurements made at 0.22 m below the water surface,
available from the file Thalhofen_Transect_0.xlsx). The ratio ω is 0.72. The confidence
intervals become wider at the distant (from the camera) locations.

According to Figure 14, the filtered velocities estimated the velocity profile relatively
well at the locations close to the camera, but the estimates become progressively less
accurate. The reference discharge is Qref = 46.54 m3/s. The estimated discharge obtained
from the unfiltered velocities (the 50% points in Figure 14) is Q50 = 46.51 m3/s, which is
very close to the reference discharge. The estimated discharge obtained from the filtered
velocities (the continuous red line in Figure 14) is Qf = 42.46 m3/s, which is 9% lower than
the reference discharge.

Figure 14. Confidence intervals of the surface velocities along cross-section of ADCP path in River
Thalhofen (frames 1,2, . . . , 56).

4. Discussion

According to the results of the case studies, the ratio ω provides useful information
on the accuracy of the estimated surface velocities. For example, in the case of Murg
River, the value of ω corresponding to surface velocities obtained from the frames with
artificial seeding is significantly lower than the value without seeding. A close look at
Figures 9 and 10 reveals a greater deviation of the estimated surface velocities from the
reference values in the former. It should be noted that in this case, the Monte Carlo
simulations and the proposed filters balance out the overall error (the error of the Qf is 16%
in both seeded and unseeded range of frames in the Murg River case study).

The shape of the confidence interval across the surface width provides useful infor-
mation about the spatial structure of the uncertainty along the cross-section. For example,
in the case of the La Morge River, Salmon River and Murg River with artificial seeding,
the confidence interval width was significantly greater at the areas close to the river-banks.
This increased width was proved a posteriori to be related to increased error at these loca-
tions. This kind of poor performance near the banks has been observed by other researchers
too. For example, in the study of Ioli et al. [25], Fudaa-LSPIV with the BASESURV filter
overestimated the flow velocity (compared to that measured with a current meter) at one
bank (see Figure 5 in their study), where fewer features were present on the water surface.
Another characteristic spatial structure of uncertainty has been observed in the case of
the Thalhofen River, where the confidence interval width was gradually increasing with
the distance from the camera. A similar effect has been observed by Le Coz et al. [14]
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and was attributed to the decreasing spatial resolution of the raw image pixels with the
distance from the camera due to the non-vertical grazing angle. In all these cases, a strong
correlation of the confidence interval width with the position reflected a poor performance
of the Free-LSPIV algorithm at the locations with increased width.

In those cases where the lack of features resulted in increased uncertainty near the
banks, the filtering algorithm successfully detected and removed the unrealistically large
velocity estimates (see the La Morge River and the Salmon River). However, the lack of
features near the banks was not always the reason for the deviation from the reference
values. For example, in the study of Kolubara River by Pearce et al. [16], the features were
evenly distributed along the entire cross-section. As a result, the confidence interval width
near the banks was not significantly different from that at the other cross-sectional locations
(Figure 2). Despite this fact, not only the filtered V50 of our study (Figure 2) but also all
six image velocimetry algorithms employed by Pearce et al. [16] deviated significantly
from the reference values at these locations (see Figure 8 in [16]). Pearce et al. [16] have
commented on this: “It is also likely that the ADCP would produce a bias towards higher
velocity magnitudes near high-slope channel edges, due to interference of signal from
shallow, low-velocity zone, with high velocity signal from deeper zone towards the center
of the channel”. If this is the case, then this deviation cannot be considered an error of the
image velocimetry methods.

In the case of the Kolubara River, Pearce et al. [16] have estimated the surface velocities
at three cross-sections, S1 (the only one used here), S2 and S3. The results they obtained
in S1 were similar to the results displayed in Figure 2. Notably, the results they have
obtained in S3 (20 m downstream of S1) from the exact same video were consistently 20%
higher than the ADCP Vs measurements. Pearce et al. [16] have attributed this deviation
to “the irregular bathymetry that in turn leads to variable flow regimes”. A similar
hydrodynamic mechanism could be the reason for the deviation of Free-LSPIV from the
ADCP measurements in the Murg River (Figure 10). The reason for suspecting the existence
of such a mechanism is the high variation of the ADCP Vs measurements (much higher
than that of the other case studies).

The results of the six case studies are summarized in Table 1. The only case where
the suggested filters deteriorated the performance was the Thalhofen River, a case with an
oblique camera angle and low video resolution.

Table 1. Results of Monte Carlo simulations and filtering in the case studies. The errors ε50 and εf and the ratio ω are
defined in Equations (1), (8) and (9), respectively.

River ε50 εf ω Comments

Kolubara –13% –13% 0.57 ADCP errors near high-slope channel edges.
Castor 4% 2% 1.13 Good estimation of surface velocities.
La Morge –10% –11% 1.49 Uncertainty near banks due to low density of

features; filter algorithm removed spurious values.
Murg 27% 16% 1.68 High uncertainty due to lack of features.
Murg seeded 20% 16% 0.31 Low uncertainty; surface velocities slightly

overestimated. (Hydrodynamic effects?)
Salmon 11% 5% 1.14 Uncertainty near banks due to low density of

features; filter algorithm removed spurious values.
Thalhofen 0% 9% 0.72 Uncertainty gradually increasing because of

oblique camera angle and low video resolution.

5. Conclusions

This study has focused on the endogenous uncertainty of the image velocimetry
algorithms. This uncertainty is mainly introduced by the parameters that influence the
sensitivity of the algorithm. The optimum value of these parameters varies significantly
with the characteristic of each case study (video resolution, camera orientation and stabi-
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lization, presence of moving objects irrelevant to the flow, illumination conditions, etc.)
and cannot be estimated a priori to achieve the optimum signal-to-noise ratio. For this
reason, in this study, the Monte Carlo simulations have been employed to quantify the
uncertainty regarding the optimum values of these parameters. Monte Carlo simulations
are well-known to be highly CPU intensive. This can be considered as a limitation of the
suggested approach.

This approach was tested in six case studies of which the data have been previously
made publicly available by independent researchers. The following conclusions were
drawn after the assessment of the results:

1. The 50% percentiles of the surface velocities along the cross-section (i.e., the value that
is greater than 50% of the corresponding velocities of the Monte Carlo simulations)
are a good estimate of the surface velocities of the cross-section. This estimation
is obtained without requiring expertise or trial-and-error procedure to select the
optimum parameter values of the image velocimetry method.

2. Various filters can be devised to take advantage of the Monte Carlo simulations and
to discard the estimates of the image velocimetry that have increased uncertainty.
For example, the estimates with confidence interval width greater than the average
confidence interval width by 20% may be discarded.

3. Specifically, for the locations near the banks and in the case of high uncertainty there
(as defined in the previous filter), the plausible assumption of lower velocities due
to increased resistance (or shear) near the banks results in the idea of improving the
estimation by using low percentiles (e.g., 5%) as an optimum estimate instead of the
50% far from the solid boundary.

4. The shape of the confidence intervals can provide indications for the existence of
specific kinds of uncertainty sources. An increased confidence interval width near
the banks indicates a probable lack of features in these areas. A gradually increasing
confidence interval width indicates decreased spatial resolution with the distance
from the camera because of an oblique camera angle and low recording resolution.

Image velocimetry is becoming increasingly popular because it is not an expensive and
demanding method concerning the required equipment. Furthermore, image velocimetry
methods not only reduce the overall workload but also save hydrologists from the need to
step into the flow, which is prohibitive in extreme floods and is dangerous, in some cases,
even in moderate flows. The only demanding fieldwork is the careful definition of ground
control points. This study showed that additional information regarding streamflow
velocities can be extracted from videos by employing Monte Carlo simulations. It is clear
that, in addition to the careful preparatory fieldwork, meticulous office work is required to
fully benefit from the advantages of the image velocimetry methods.
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