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Abstract 

One of the key issues in hydrology is the estimation of streamflow, bathymetry, and water-

pressure in rivers through non-invasive practices. This study investigates the streamwise velocity, 

pressure and water-depth spatial-deterministic profiles in a cross-section under incompressible 

one-dimensional steady-flow dynamics. We implement a probabilistic-deterministic framework 

where the profiles can be determined by treating the above variables as random. We focus on the 

absolute spatial derivative of the three variables and show how it can be linked to their actual 

profiles. In particular, the spatial derivative can be estimated from the probability distribution 

function of each variable, on the assumption of positively or negatively monotonic behaviour with 

respect to the location variable, and on the principle of entropy maximization with typical 

hydraulic conditions and statistical constraints (i.e. conservation of mass, linear momentum rate, 

and energy rate), and under a uniform distribution for the location variable in the cross-section. 

The resulting distributions are the exponential or Gaussian one for the water-depth and pressure 

and a three-parameter one for the velocity, which often can be well approximated by other flexible 

and easily handled distributions. Through theoretical reasoning, we show that the above 

configuration exhibits several advantages as compared to established analyses. Finally, we discuss 

how the above framework can be used for streamflow, bathymetry and pressure estimation in 

rivers, with illustrative applications in the companion work of Dimitriadis et al. (2019b). 

Keywords: entropy-maximization; 1d steady-flow dynamics; velocity profile; pressure profile; 

water-depth profile; sampling strategy 

1. Introduction 

The mathematical branch of stochastics has been widely developed to model the so-called 

random, i.e., unpredictable, fluctuations recorded in non-linear geophysical systems and to help 

develop a unified description of natural phenomena, while expelling dichotomies like random vs. 

deterministic. Particularly, it seems that rather both randomness and predictability coexist and 

are intrinsic to natural systems that can be deterministic and random at the same time, depending 

on the prediction horizon and the time scale (Koutsoyiannis, 2010). In other words, the line 

distinguishing determinism (i.e., predictability) and randomness (i.e., unpredictability) is related 

to the scale of the time-window within which the future state deviates from a deterministic 

prediction by an error threshold. Therefore, by applying a stochastic process we enable the 

generation of an ensemble of realizations, while observation of the given natural system can only 
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produce a single observed time series or multiple ones in repeatable experiments (Dimitriadis et 

al., 2016a). 

In this work, we focus on the intrinsic uncertainty and deterministic conditions of the steady 

streamflow process and we investigate how it can be quantified through the time-averaged 

surface velocity, pressure and water-depth in a natural open-channel cross-section. For this, we 

adopt the concept and methodology introduced by Chiu (1987) of applying a maximum-entropy-

based stochastic framework for discharge estimation in natural open channels, and show 

specifically how it can be linked to deterministic velocity, pressure and water-depth distributions. 

This framework has been applied to several flow conditions such as open-channel flow (Chiu, 

1988; 1989), circular pipe flow (Chiu et al., 1993; Chiu and Hsu, 2005; Yoon et al., 2012; Singh, 

2014; Jiang et al., 2016; Choo et al., 2017; Kazemian et al., 2018), unsteady tidal flow (Chen and 

Chui, 2002; Chen et al., 2012; Bechle and Wu, 2014); with additional than the mean constraints 

(Chiu, 1989; Barbe et al., 1991; Singh, 2014; Kumbhakar, et al., 2019a); with alternate entropy 

measures (Cui and Singh, 2013; 2014; Sing and Luo, 2014; Kumbhakar and Ghoshal, 2016; 

Khozani and Bonakdari, 2018; Kumbhakar et al., 2019b,c); for different geometries of the open-

channel cross-section such as with wide or narrow two-dimensional rectangular shapes (Chiu, 

1988; Araujo and Chaudhry, 1998; Marini et al., 2011; 2017; Singh et al., 2013; Fontana et al., 

2013; Singh, 2014; Mirauda et al., 2018) or irregular shapes (Chiu and Murray, 1992; Moramarco 

et al., 2004; Singh, 2014); accounting for channel roughness (Chiu, 1991; Greco et al., 2014; Singh, 

2014; Greco, 2015; Greco and Mirauda, 2015; Greco and Moramarco, 2015; Wibowo, 2015); for 

the design of irrigation ditches (Greco, 2016), for bathymetry estimation (Moramarco et al., 2013; 

2019; Farina et al., 2015); for the structure of furrow geometry (Sighn, 2012), open-channel with 

submerged aquatic plants (Chen and Kao, 2011); for the derivation of the streamwise isovelocity 

contours (Chiu, 1989; Maghrebi and Rahimpour, 2005; 2006); for sediment flow and bed-load 

thickness (Chiu, 1987; Kumbhakar et al., 2017a,b, 2018; Zhu and Yu, 2019); for the scour depth 

(Pizarro et al., 2017); for the shear stress (Chiu, 1987; Singh, 2014; Sheikh and Bonakdari, 2015; 

Kazemian et al., 2019a); for the piezometric head in groundwater flow (Barbe et al., 1994); 

abundant applications in other hydrological and hydraulic fields can be found in Singh (2014). 

The standard practice for estimating the discharge at a cross-section of a channel is to point-

sample the velocity field, assuming steady-state hydraulics and stable channel geometry 

measurable with good accuracy over short times. Such a practice is tedious, often dangerous, and 

even infeasible under high flows; the non-uniform longitudinal velocity is sampled at multiple 

locations in a cross-section, commonly at 20%, ~60% and 80% of the depth on a number of 

verticals. The selection of those locations is semi-empirical; it is guided by the idealised 

deterministic model of the Prandtl-von Kàrman logarithmic velocity profile (see also application 

in sect. 2.3 and in the companion work of Dimitriadis et al., 2019b, sect. 3.1.1) of normal, turbulent 

flow in an infinitely wide channel. The traditional framework allows for the implicit determination 

of the streamflow by a few samples such as the velocities at boundaries and surface, which can be 

nowadays measured with non-invasive methods, and the location and magnitude of the maximum 

velocity within the cross-section when the dip-phenomenon occurs (Chiu, 1988; Xia, 1997; Chen 

and Chiu, 2004; Moramarco et al., 2004; Chiu et al., 2005; Papadimitrakis and Orphanos, 2009; 

Singh, 2014; Chiu and Hsu, 2016; Moramarco et al., 2017). The other model parameters are 

assumed constant in a fixed cross-section in the sense that they mainly vary due to hydraulic 

conditions and due to several hydraulic properties of the cross-section that may be assumed 

unchangeable for a relatively long time-period such as roughness and geometry of the cross-
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section. These parameters may be estimated theoretically only once, as for example when the 

river can be accessible for velocity point-sampling throughout the whole cross-section (Chiu and 

Said, 1995; Farina et al., 2014), and with relatively small errors on the streamfllow estimation of 

the order of 10% (Fulton and Ostrowski, 2008; Chen et al., 2013; see also discussion in Dimitriadis 

et al., 2019b, sect. 3.4). 

The revisited probabilistic-deterministic framework focuses on the absolute values of the spatial 

derivatives with respect to location of the velocity, pressure water-depth, which, as shown in the 

next sections, exhibits several advantages as compared to the traditional analysis of the regular 

spatial variables. In section 2, we present some statistical tools and probabilistic analyses related 

to the so-called change-of-variable technique. In section 3, we show how the previous technique 

can be linked to the principle of maximum entropy, and we derive general deterministic profiles 

for the velocity, pressure and water-depth emerging from the one-dimensional hydraulic 

conservation of mass, linear momentum rate and energy rate in a cross-section. Finally, in section 

4, we discuss on the limitations and strengths of the proposed framework. We note that several 

applications on open-channel flow with small and large width-to-depth ratios, irregular 

geometries, spillways, and on pipe flow of symmetrical cross-sections, can be found in the 

companion work of Dimitriadis et al. (2019b). 

2. Methodology 

In this section, we present the probabilistic-deterministic methodology for applications in 

hydraulics based on Chiu’s (1988) original methodology, but also introduce some new concepts 

with focus on the probability distribution function of the velocity (in short velocity distribution), 

pressure (in short pressure distribution) and water-depth (in short depth distribution), and how 

they can be linked to the deterministic functions of the velocity, pressure and water-depth with 

respect to location (in short velocity profile, pressure profile, and depth profile) through uniform 

sampling of the location on a cross-section (in short location distribution or sampling distribution). 

2.1. Concepts of methodology and definitions 

We wish to derive an expression of the time-averaged velocity, pressure and water-depth as a 

function of the geometry of a natural cross-section in incompressible steady-state flow conditions. 

All models are obviously connected to the Reynolds shear stress model, which is a key assumption 

in computational fluid dynamics (e.g., Schmitt, 2007). Therefore, the examined task could be done 

deterministically by employing the Navier-Stokes equations (i.e., conservation of mass, 

momentum, energy etc.) either through analytical reasoning under several assumptions or 

numerically through computational fluid dynamic schemes. However, this deterministic approach 

cannot easily handle the intrinsic uncertainty of the natural processes, since we would require 

almost infinite information to deterministically study the velocity in every water parcel (lump) 

within a river section. Therefore, we could apply a combined deterministic-probabilistic approach 

that can not only handle as constraints simple deterministic (analytical or empirical) solutions of 

the Navier-Stokes under reasonable assumptions (e.g., steady-state, uniform-flow, turbulent-

regime), but that could also properly handle the uncertain components of the natural process by 

maximizing the effect of any available information from recorded field data. This approach can be 

also applied considerably easier as compared to the purely deterministic one, and could be even 

expanded to take into consideration additional hydraulic flow conditions such as rotationality 
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(Joseph, 2006), viscosity (Prandtl, 1905), etc. However, such effects can be often neglected in 

geometries and conditions often met in natural rivers. 

The three key variables in fluid mechanics are the vector velocity (measured in m/s), pressure 

(measured in m; standardized by ��, with � the water density and g the gravity acceleration, both 

assumed constant), and water-depth (measured in m). Here, we analyse the longitudinal velocity 

and pressure, as well as the water-depth within a cross-section. Note that we adopt the Dutch 

convention (Hemelrijk, 1966), where a random variable is underlined to be distinguished from a 

regular one, which denotes the support values of the random variable, and a hat over a variable 

denotes an estimation function (or else called estimator). We treat the velocity � in the cross-

section as a random process ���, �, 	
 spatially distributed within the cross-sectional geometry (x, 

y) as well as temporally evolving in time t. We further assume that the flow in the cross-section is 

steady and has been time-averaged, and thus, the random process depends only on the 

geometrical characteristics of the cross-section, i.e.: 

���, 	
 = � ���, �, 	
d��� �  (1) 

where � is the averaging time selected such that the mean value has been reached at each spatial 

location, and � is a random process containing all the random variables ���, 	
. In a similar 

manner we define the random process of pressure ���, 	
, and the water-depth ���, 	
. 

A proper way to continue the analysis would be to investigate the stochastic behaviour of the 

above three processes (i.e., by estimating their marginal and joint statistical measures), derive 

from there their spatial dependence, and thus, the velocity, pressure and depth stochastic models. 

However, this method would require many observations for each variable within several cross-

sections. Unfortunately, such a large number of observations is hardly available for natural cross-

sections or even from laboratory setups. Alternatively, we may assume a white noise dependence 

structure for the above processes (i.e., no spatial auto- or joint-correlation), and thus, treat the 

above variables as random with a marginal distribution ����
 ≔ P�� ≤ ��, ����
 ≔ P �� ≤ ��, 

and ����
 ≔ P�� ≤ ��, respectively. In this manner, the realizations of each variable can be 

randomly distributed within a cross-section. For example, Chiu (1988) proposed the velocity to 

be uniformly distributed on the isovel lines (i.e., lines within the cross-section, where velocity has 

unique expected value) that are considered fixed for typical hydraulic conditions. However, since 

all processes have evidently a structure within the cross-section, Chiu (1988) proposed to 

represent this by introducing a deterministic function that rearranges the randomly distributed 

variables. An obvious limitation of this methodology is that after employing the deterministic 

function the spatial (auto and cross) dependence of all the initially defined random variables ���, 	
, ���, 	
 and ���, 	
 would be again zero (rare case in natural phenomena), and the 

statistical properties of each point velocity and pressure within the cross-section could be 

explicitly estimated by the deterministic function and the marginal values (resembling a non-

stationary process). Nevertheless, this approach has been proven to be a powerful tool for 

describing the velocity profile, and so, here, we explore and further advance this theoretical 

concept as an approximation to the task. 
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The aforementioned deterministic continuous functions are defined as � = ���
, � = ���
, and � =  ��
, where � = !��, y
 is a function of the area A, with the axis origin arbitrarily set (e.g., if 

the axis is set at the lowest point of the cross-section, y will denote the water-depth measured 

from the channel bottom, and x the perpendicular distance). Examples of such deterministic 

functions are for the water-depth of an oval-type commonly observed in natural cross-sections 

like the half-circle one of radius R having the maximum hydraulic radius (i.e., maximum wetted 

area within the smallest available wetted perimeter) with  ��, 	
 = √$% − �% (see an example 

and sketch in the companion work of Dimitriadis et al., 2019b, sect. 3.2). For the relative pressure, 

in case of no strong fluid accelerations normal to the flow direction, one may assume a linear 

hydrostatic profile with ���, 	
 = ' − 	 (i.e., lines of points with the same vertical distance from 

the reference level have the same pressure), where d is the maximum vertical distance between 

the atmospheric pressure level and the reference level (for an example see the companion work 

of Dimitriadis et al., 2019b, sect. 3.1.3). For the velocity, several models exist depending on the 

hydraulic conditions of the flow, as for example the one-dimensional Couette model, often met at 

the sub-viscous area, with the velocity varying linearly with depth, i.e. ��	
 = (y, or the von 

Kàrman logarithmic profile for channels of infinite width with ���, 	
 = ) ln�	/-
, where ) and - 

are model parameters (for more details see an application in sect. 2.3 and in the companion work 

of Dimitriadis et al., 2019b, sect. 3.1.1). 

We comment that if the shear stress, pressure-gradient or cross-section geometry models are 

given then one could easily calculate the location of the isolines within the cross-section for each 

one of the three variables, and vice versa. For example, Chiu (1988) introduced a model for the 

locations of the iso-velocity lines (or simply called isovels) along a vertical line in the channel 

based on observations and numerical models (Chiu and Lin, 1983; Chiu and Chiou, 1986), i.e. .�	
 = 	/�' − ℎ
e123/�425
, where ℎ is the distance between the water surface and the location 

of the maximum velocity. Notice that in the latter function one value of . corresponds to two 

depths 	 due to the non-monotonicity of the function. Chiu (1988) actually introduced this model 

to tackle the non-monotonicity issue often appearing in hydraulics (e.g., open-channels), which is 

mainly due to the effects of boundaries on the flow creating secondary currents (else known as 

dip-phenomenon; Yang et al., 2012). 

Along a vertical line the velocity derivative can be expressed as: 

6���
6� = 6��.
6. 6.�	
6	  (2) 

In other words, by defining just the location of the isovels within a cross-section, the velocity 

derivative with respect to depth can be again calculated provided that the derivative of the 

velocity with respect to isovels, i.e. 6��.
/6., is estimated instead of 6��	
/6	, as described 

above. Chiu (1988) proposed a method to estimate both the velocity derivatives through the 

entropy maximization principle. 

In this work, we follow a similar approach but with focus on the absolute value of the derivative, 

i.e. for the one-dimensional velocity |6��	
/6	|, and without the need to acquire any information 

on the locations of isolines. After the estimation of the absolute value of the derivative one may 

adopt appropriate assumptions on how the sign of the regular variable varies within the cross-
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section, and construct the isolines. In fact, for the velocity, two reasonable assumptions for open-

channel flows are that the shear stress is continuous in the whole cross-section and that it is 

mainly caused by the boundary effects from channel bottom and sides, as well as from the water 

surface. If these assumptions are met then for areas outside the sub-viscous layer, the shear stress 

along a vertical line should have only one spatial location, where its sign changes and, specifically, 

at the location of zero value of the second derivative, 6%��	
/6	% = 0. With this information one 

may construct the velocity profile without the need of implementing empirical or other theoretical 

expressions for the isovels (see preliminary results and various applications of the above two 

assumptions for the shear stress in Dimitriadis et al., 2019a;b). 

2.2. Change of random variable through an unknown deterministic function 

Based on the above concepts and definitions, it can be easily shown that for a positively monotonic 

behaviour between the random variables of the velocity and the location (similarly for the 

pressure and water-depth), we have that (e.g., Benjamin and Cornell, 2014): 

�9��
 = �:;<�����
 = ������
�  (3) 

where �21��
 is the single-valued inverse function of ���
. Equivalently, if we start from the 

distribution of ����
 we have that: 

����
 = �:�9���
 = �9��21��
�  (4) 

For the general case of negatively or positively monotonic behaviour: 

>d���
d� > = ?9��

?�����
�  (5) 

and similarly 

>d�21��
d� > = ?���

?9��21��
�  (6) 

In Eqs. (5) and (6) |d�21��
/d�|�@:�9
 and |d���
/d�|9@:;<��
 are the absolute values of the total 

derivatives of �21��
 with respect to � estimated on � = ���
, and ���
 with respect to � 

estimated on � = �21��
, respectively; and ?9��
 and ?���
 are the probability density distribution 

functions of � and � = ����, i.e. ?9��
 ≔ d�9��
/d� and ?���
 ≔ d����
/d�, respectively. 

Since �9��
 can be arbitrarily chosen, estimating ?���
 allows for the determination of � = ���
. 

For example, in case ���
 is monotonic, i.e. d���
/d� ≥ 0 or d���
/d� ≤ 0, then ���
 can be 

estimated by solving the nonlinear expression below as a function of the unknown ���
: 
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���
 = ± C ?9��

?�����
� d�9D

9E
  (7) 

where the positive and negative sign holds for a positively and negatively monotonic ���
, 

respectively, and �F and �G are the minimum and maximum limits of �. Note that more than one 

solution for ���
 may exist. 

A useful solution for the inverse function �21��
 can be derived for a uniform location distribution 

and a positively monotonic behaviour, i.e.: 

� = �21��
 = ����
 ��21��G
 − �21��F
� + �21��F
 (8) 

where �G and �F are the velocities at locations �F = �21��F
 and �G = �21��G
, respectively. 

In case of a non-monotonic ���
, the above expression no longer holds and the function ���
 must 

be divided into I� branches of monotonic behavior of �, i.e: 

���
 =
⎩⎪⎨
⎪⎧ �1��
, with sgn Td�1��
d� U = V1, −∞ < � ≤ �1…

�Z��
, with sgn Td�Z��
d� U = VZ, �Z[21 < � < ∞
  (9) 

where V\ are either 1 or -1 for the whole range of �Z[2% < � ≤ �Z[21, ] is the index for the portions 

of the function ���
 ranging from 1 to I�, and �^  are the velocity limits at each portion of ���
 

where the derivative of ���
 has a constant sign. 

Then, it can be shown that: 

?9��
 = _ >d�\��
d� > ?���\��
�
Z[

\@1
  (10) 

Since here we are interested in the absolute spatial derivative of ���
 with respect to location, i.e. |d���
/d�|, we may transform the function ���
 to a function `��
 with a monotonic behaviour in 

the cross-section. In other words, the new function `��
 will be monotonic as compared to the 

non-monotonic ���
, while both will have equal spatial derivatives with respect to the location, 

i.e. |d`��
/d�| = |d���
/d�|. If ���
 is known, `��
 can be estimated at every location �a in the 

cross-section as: 

\̀��a� = \̀��a21� + >d�\��a�d� > ��a − �a21�  (11) 
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where b is the index for locations within each portion of ���
 ranging from 1 to I\, and \̀���
 =
\̀21��Zc;<�. Note that we can also get ���
 from `��
 if we know the sings of ���
 derivative for 

the whole area of the cross-section. The corresponding monotonic functions for the pressure and 

water-depth are ψ(s) and ω(s), with |d���
/d�| = |d���
/d�| and |d ��
/d�| = |d���
/d�|, 
respectively. 

Therefore, if the two density functions of the location �9��
 and the velocity ����
 are 

appropriately selected, the positively monotonic deterministic function `��
, which is used to 

transform one variable to the other, can be estimated, and so does the profile � = ���
. 

Finally, we remark that in the presented framework the location variable can be regarded as the 

way one samples the velocities in a cross-section. For example, if we uniformly sample the 

velocities that are assumed to be normally distributed along a vertical line, i.e. we take velocity 

measurements that follow the N(0,1) uniformly distributed over this line (Fig. 1), then �3�	
 =
�	 − 	F
/�	G − 	F
, where the minimum and maximum sampling depths are 	d = 0 (channel 

bottom) and 	G = ' (open surface). Equivalently, if the deterministic profile is known then by 

changing the distribution for sampling, the velocity distribution must be also altered, since the 

two variables are obviously linked (see next section for an application). 

 

Figure 1: An example of a Gaussian N(0,1) velocity distribution mapped to a uniform U(0,1) 

location distribution. 

 

2.3. Demonstration of concepts with the one-dimensional von Kàrman 

profile 

The presented methodology described in brief in the previous section has two strong advantages 

over established approaches of fitting an idealized (uniform flow) deterministic profile directly to 

observations. Let us assume the profile of the streamwise velocity for discharge estimation across 

a natural river section. First, since the profile depends entirely on the random variable of the 
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velocity � or the location �, we may choose a convenient distribution �9��
, e.g. a uniform one that 

should require less effort and equipment (see further details in the discussion in sect. 4, and 

applications and discussion in Dimitriadis et al., 2019b, sect. 3.4). Second, we may even acquire 

information on the distribution of the longitudinal velocity ����
, following, for example, the 

framework of maximum entropy under typical hydraulic constraints (see sect. 3; as first shown 

by Chiu, 1987). 

For an illustration of the above methodology, we assume the one-dimensional von Kàrman (1930) 

profile of the longitudinal velocity on a vertical between the bed and the water surface in an 

infinitely-wide river cross-section under fully-developed turbulent flow, turbulence being 

modelled according to the mixing-length theory (Schlichting, 1960; for more generic expressions 

see e.g., Schlichting, and Gersten, 2017): 

� = ��	
 = ) ln�	/-
 (12) 

where � = ��	
 is the velocity profile, 	 denotes the distance from the bed with - ≤ 	 ≤ ℎ, h is 

the total water depth, b is the bed roughness indicating the water depth where the velocity 

becomes approximately zero, i.e. ��-
 = 0 (and stays zero until y = 0 if the pressure gradient is 

zero or becomes even negative until brought back to zero at y = 0 if a suction at the wall takes 

place leading to boundary layer separation), and α = u*/κ is the friction velocity u* (in same units 

as �) divided by the von Kàrman constant κ (usually taken as ~0.4 for clear water). 

We then assume that the above profile is unknown and wish to take velocity samples over the 

entire depth. As mentioned above, we may choose a convenient sampling distribution �3�	
, such 

as the uniform one, with y denoting depth measured from the channel bottom: 

�3�	
 = 	 − -' − - (13) 

for - ≤ 	 ≤ ', and e�	 < - 
 = 0 and e�	 > ' 
 = 1. 

We generate depths (i.e. sample points) by the above distribution and estimate the velocities from 

the expression ��	
 = ) ln�	/-
, as if we had actually measured them in the field. Afterwards, we 

estimate the probability distribution function of the velocity samples through, for example, a 

quantile plot (other statistical test may be used) and test what velocity profile optimally fits the 

data (Fig. 2). Since we a priori know the profile, we can estimate the true velocity distribution from 

the inverse function 	 = �21��
 = -e�/h, as: 

?���
 = ?9��21��
� >d�21��
d� > = -e�/h
)�' − -
 (14) 

which results in 
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����
 = e�/h − 1'/- − 1  (15) 

for 0 ≤ � ≤ ( ln�'/-
. Note that we here assume the correct distribution, but in case of an 

unknown profile we should perform statistical test for many functions, in order to decide on the 

best-fitted one. 

Finally, after we decide on the best-fitted distribution, we estimate the velocity profile by solving 

the nonlinear expression: 

>d��	
d	 > = ?3�	

?����	
� = 142iijk�l
/m

h�42i

 (16) 

If we assume a positively monotonic profile (the negative profile cannot satisfy both limits at 

bottom and surface), we have that: 

d���	
�d	 = )- e2:�3
/h (17) 

which after manipulations results in 

��	
 = ) ln�	
 + V (18) 

with V = −) ln�-
, and so, ��	
 = ) ln�	/-
, a.k.a. Eq. 12. 
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Figure 2: Quantile plot between the n observed velocities (estimated from the one-dimensional 

von Kàrman velocity profile for α = 1 m/s, b =0.01 m and n = 100), and the modelled velocities 

estimated from the quantile of the derived velocity distribution function ��21�]/�I + 1
�, where i 

= [1, n] is the increasing index (i.e. from small to large values) assigned to each sorted observed 

velocity. 

We now assume that we know the von Kàrman’s profile and we seek the probability distribution 

of ��	
. For variety, we express the von Kàrman profile for a reference level set at the water 

surface instead of the bottom as previously shown, i.e.: 

� = ��	
 = ) ln�'/- − 	/-
  (19) 

where 	 now denotes the depth measured from the surface with 	F = 0 and 	G = ' − -, and again 

the maximum velocity is �G = )ln�'/-
. Note that we may easily alter the profile so that the depth 

varies from 0 to 	G = ', i.e. ��	
 = ) ln��' + -
/- − 	/-
 with now �G = ) ln�'/- + 1
. 

For convenience, we formulate the velocity to be positively monotonic with respect to the depth, 

hence the ζ(s) function can be expressed as (Fig. 3): 

`�	
 = 2�G − ��	
  (20) 

where |d`�	
/d	| = |d��	
/d	|. 
For a uniform distribution of sampling, we can now derive the velocity distribution from Eq. 3: 

?���
 = '%
)-�' − -
 e2[m (21) 

which corresponds to the exponential distribution, i.e. ����
 = 1 − e2�/h, with a low and high 

truncation at �G and 2�G, respectively. Note that since the absolute derivatives of ��	
 and `�	
 

are equal both solutions satisfy the velocity distribution, and based on assumptions for the 

hydraulic conditions we may decide upon which to select (see below). 

Due to the adopted hydraulic condition that the actual derivative must be positive, since shear 

stress is expected to increase with depth, the derived true velocity profile is the original von 

Kàrman one. Interestingly, if we measure the bed roughness (and assume it remains constant for 

a long period), the total water depth in the cross-section, and the velocity at surface, we may fully 

estimate the proposed profile, and thus the streamflow through the velocity mean: 

� = '�G' − - − ) = '�G' − - − �Gln�'/-
 (22) 

and for ' ≫ - we have �/�G ≈ 1 − 1/ln�'/-
. 
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We remark that Chiu (1988) has also shown how a similar to the above profile in Eqn. 19 can be 

derived from entropy maximization of a truncated positive-exponential distribution and, in fact, 

he proposed a more generalized expression to allow zero velocity at zero depth. As we show above 

in Eqn. 21, the original von Kàrman model can be also derived from a truncated exponential 

distribution. 

Finally, for the pressure and water-depth, it can easily be shown that for a hydrostatic profile ��	
 =  �	
 = 	 and � =  � = 	/2, where � and � are the pressure and depth mean values, 

respectively. The isobaric and depth lines, and the isovels, are obviously parallel to the x-x axis, 

i.e. independent of the position x within the cross-section. 

 

Figure 3: The von Kàrman velocity profile g(y) formulated for depth y measured from the water 

surface and the transformed profile ζ(y), so that the velocity monotonically increases with depth. 

 

3. Maximized entropy probability distribution under typical hydraulic 

constraints 

As mentioned previously, there are numerous possible probability distributions that could be 

used for the above methodology. In this section, we describe how we can introduce hydraulic 

constraints and thus, derive a generic distribution function for the velocity, pressure and water-

depth. We note that there are numerous constraints that one could employ, and therefore it is 

expected that the resulting distributions will never be exact. Nevertheless, we are interested in 

narrowing the variability of this inaccuracy to a selected degree and, at the same time, using a 

small number of parameters. Following Chiu’s (1988) methodology, we introduce the most 

typical, for a natural channel, hydraulic constraints of the conservation of mass, linear momentum 

rate and energy rate for incompressible steady flow. Then, by following the principle of maximum 

entropy, we derive general distributions for the variables of interest that satisfy these constraints. 
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3.1. Maximized information entropy probability distribution 

Entropy for the velocity in continuous-time (similarly for the pressure and water-depth) is 

defined as (Boltzmann, 1877; Gibbs, 1878; and Shannon, 1948; abbreviated BGS, as discussed in 

Koutsoyiannis, 2011): 

q��; s�: = − C ?���; s
ln �?���; s
� d�u
2u   (23) 

where λ = vw�, w1, … , wxy, are parameters (wx  ≥ 0; also known as Lagrangian multipliers of the 

BGS entropy) linked to m constraints. For example, for constraints based on the first m raw 

statistical moments we have: 

� �z?���; s
d�u2u = E|�z}, for ~ = 0, 1, …, � (24) 

The resulting distribution, in continuous-time, from the above definitions and constraints is the, 

so-called, Maximum Entropy Density distribution (MED; Jaynes, 1957): 

?���; s
: = e2�����<��⋯�����
  (25) 

with wx > 0. Note that when � is not (lower or upper) bounded (i.e. −∞ < � < ∞), then, for an 

even number of constraints (i.e. odd number of m) the maximum entropy cannot be reached 

(Cover and Thomas, 1991, sect. 12.3), while for a bounded variable it exists (see also discussion 

in sect. 3.3). 

The entropy of the location is similarly q��; s� = − � ?9��
ln �?9��
� d�u2u , or simply q���, and is 

linked to that of the velocity q���, via the transformation function � = ����. It can be easily shown 

that: 

q��� = q��� + C ?9��
ln T>d���
d� >U d�u
2u   (26) 

where we set � ≔ � ?9��
ln ���:�9
�9 �� d�u2u . 

Note that the constraints of q��� are the same as those of q���, but expressed through the 

transformation function � = ���
. For example, if the constraints are the raw moments of the 

velocity, then the constraints for the location variable are Ev�z��
y, and thus, the resulting 

distribution function of the location variable is: 

?9��; s
: = e2T����<:�9
�⋯���:��9
2�����k��
�� ��U  (27) 
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3.2. Typical hydraulic conditions and statistical constraints 

We consider one-dimensional and incompressible steady-flow conditions for the random 

variables of the longitudinal velocity, pressure and water-depth all spatially varying within a 

cross-section. We set the reference level for the sampling location, velocity, pressure and water-

depth variables at the cross-section surface, i.e. at the point(s) with minimum distance from 

atmospheric pressure level for the open-channel flow case or at the soffit of the cross-section for 

the pipe flow case. 

Note that the water-depth and location variables can sometimes coincide, as in one-dimensional 

analysis, but we stress that they are different. For example, as we show below, while the location 

variable is always assumed to be uniformly distributed, since it is uniformly mapped to the cross-

section, the water-depth may follow other distributions. Therefore, the location variable varies 

from a fixed low value �� = 0 on the boundary with the smallest distance from the origin to some 

maximum �x on the boundary with the largest distance from the origin (e.g. �G = ' in open-

channel flows, and fixed �G = � in circular pipe flows, where D is its diameter). Similarly, the 

velocity varies from a low value �� at the wall boundaries (e.g., �� = 0 for the no-slip condition) 

to some maximum value �G located usually at the point with the maximum distance from 

boundaries (e.g., free-surface for rectangular open-channel flows and pipe centre for circular pipe 

flows). Similarly, the pressure varies in a positively monotonic way with respect to depth from a 

fixed small value ��, usually at the highest point of the cross-section (e.g., �� = 0 at the water 

surface in open channels; �� > 0 at the section soffit in pipe flows) to some maximum value �G at 

the lowest point of the cross-section. Finally, the water-depth varies from a zero value �� = 0 at 

the water surface to some maximum value �G at the vertical with the largest distance from 

surface. We note that in fixed geometries, as for example in pipe flows, the water-depth can be 

again defined with respect to the pipe soffit (see application in the companion work of Dimitriadis 

et al., 2019b sect. 3.2). However, these geometries are of no particular interest for the water-depth 

analysis in this study, which mostly focuses on naturally-formed cross-sections and not strictly 

man-made. 

The values of the above variables at the boundaries are either fixed to a theoretically derived or 

observed value such as zero (e.g. �� = 0, �� = 0, �� = 0, and �� = 0) or other values (e.g. �G = �) 

or are left unbounded until observed. For example, there is no hydraulic condition or other 

physical justification preventing a water lump to reach arbitrarily high values (see discussion for 

the velocity in Lighthill and Whitham, 1955) and so, it would be redundant to assume that a 

maximum value within a natural cross-section is imposed by nature. Exceptions may include 

laboratory or other experiments where the maximum boundary values of depth, velocity and 

pressure are specified by the observer for the specific experiment. A rather trivial information is 

that the speed of sound is considered to be the physical limit of water wave velocity, while for the 

other two is the height of the atmospheric boundary layer, but for the examined cases, the effect 

of bounding these variables to these limits or leaving them unbounded is assumed negligible. We 

note that leaving these variables unbounded does not imply that their maximum values in a cross-

section could reach high magnitudes. However, if their values at the boundaries are observed, 

fixed or specified, then we may pass this information as a constraint for the entropy maximization. 

If no information is available, then we may simply draw a sample series from the distribution of 

the unbounded maximized entropy variable of interest, with the only constraint to be positive or 

even totally unbounded in cases where velocity can be negative, and then, employ hydraulic 
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conditions to re-arrange the sample values in the cross-section. In other words, the unobserved, 

unfixed or unspecified boundary values are required in the deterministic re-construction model 

and not in the probabilistic one. For example, in case of pipe flow, the depth is bound to the fixed 

geometry, while the velocity and pressure are only low-bounded to zero (i.e. positive value), since 

the maximum velocity and pressure magnitudes are no longer fixed and may change based on 

different discharges, wall-roughness and flow-states. 

Fortunately, in common cross-sections, the values at boundaries can be practically assumed or 

accurately measured by non-invasive methods, as for example from drones and acoustic or pulse 

recording devices (e.g., Sasso et al., 2018). An alternative approach for estimating these boundary 

values is implicitly by the maximum depth in the cross-section, which is the easiest measurable 

variable. Such methods may be employed through either hydraulic approaches such as the 

Manning formula (e.g., Dimitriadis, 2018), or the rating curve (e.g., Manfreda, 2018), or even via 

computational fluid dynamic simulations in case there is no information for the examined area 

(e.g., Dimitriadis et al., 2016b). In any case, we should avoid estimating these values by the 

maximum value drawn from a sample, which is a highly biased estimation, since it is obviously 

explicitly determined by the most extreme value of the sample.  

Based on the above configuration, we map the velocity, pressure and depth distributions on the 

fixed area of the cross-section through the Monte-Carlo technique (Metropolis, 1989) that 

assumes a uniform sampling distribution ?9��
 to estimate the integral over the area A of any 

continuous function ���
 with fixed values at the boundaries of the area. Specifically, it can be 

shown that if we generate a number of N points at locations �\  (] = 1, … , �) uniformly distributed 

within the cross-section, and estimate the function values ���\
, then: 

C ���
d�� = lim�→u _ ���\
�
\@1

≈ �E|�����} (28) 

where ����\
 = 1/� ∑ ���\
�\@1  is an estimator for the function ���
, which is unbiased, and thus, 

1/� C ���
d�� ≈ E|����} = C ���
?9��
d�u
2u  (29) 

Then, it can be easily shown that for the velocity (similarly for the other variables): 

e�� ≤ ��� − e�� ≤ ��� = e �� ≤ `21���
� − e �� ≤ `21���
� ≈ 1/� C d��;<���

�;<���
  (30) 

where �� and �� are two arbitrary lower and higher velocity values mapped at the locations `21���
 and `21���
, respectively, which are essentially the locations of the original monotonic 

velocities before the hydraulic conditions take place and transform them to the final non-

monotonic ones. 
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In other words, the occurrence probability of a range of velocities (between �� and ��) equals the 

percentage area between the locations `21���
 and `21���
, where these velocities are generated 

with the Monte-Carlo uniform sampling in the area. Caution is required when one changes the 

sampling distribution to a non-uniform one with respect to the location, since, obviously, this 

would result in a different estimation of the above integral (see an application in the companion 

work of Dimitriadis et al., 2019b, sect. 3.4). In fact, if one samples a function ��	
 uniformly in an 

area with respect to the variable . instead of the location variable s, then, if these are for example, 

connected along a vertical line y through the function . = ��	
 ≠ 	, then: 

C ��	
d	3D
3E

= C d�21�.
d. ��.
d.:;<��D

:;<���
 ≠ C ��.
d.�D

��
 (31) 

where equality holds only when ��	
 = 	. Note that if one value of . corresponds to two or more 

location points of � then the sign > applies to the above expression, while if one location point � 

corresponds to two or more values of . then the sign < applies instead. 

After mapping the distributions of velocity, pressure and depth to the uniform one for the location 

variable, we can truncate them to their determined (observed, fixed or specified) values on the 

boundaries, as mentioned above. 

Based on the above concepts, we can now express the hydraulic conditions for the three variables 

through the incompressible one-dimensional steady-state dynamics. The three typical hydraulic 

conditions for the longitudinal velocity (Chiu, 1989), pressure and depth of a cross-section involve 

the conservation of mass, linear momentum rate and energy rate. 

An extra fundamental hydraulic and statistical condition is that: 

C ?���
d�u
2u = C ?9��
d��D

�E
= C ?9��
d�9D

9E
= 1� C d�� = 1 (32) 

where � can be linked to the �F and �G values if the geometry of the cross-section is assumed 

knowable. 

For the mean cross-sectional velocity, it can easily be shown that the conservation of mass holds: 

E|�} = C �?���
d�u
2u = 1� C ���
d�� = �/� = � (33) 

where Q the discharge, which can be linked to the expected value of the velocity as   = �/�. 

Similarly, the mean linear momentum rate for the cross-section in the flow direction is we� +�¡�%/�, where e is the mean hydrostatic pressure (in Pa) exerted at the pressure centroid, and w is the pressure parameter (Yen, 1973; similar analysis in Koussis, 1975), which is defined 

through: 
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E ¢�£ = C �?���
d�u
� = 1� C �%��
d�� = we = � (34) 

The pressure centroid �¤ = 1��¥ � ����
d��  is a function of the area centroid �¤, i.e.: 

E|�} = C �?���
d�u
� = 1� C  ��
d�� = � (35) 

and the second-moment, i.e.: 

E|�%} = C �%?���
d�u
� = 1� C  %��
d�� = ¦� C ����
d��  (36) 

where ¦ = E|�%}/��¤�¤
 is a pressure-centroid coefficient that can be determined if the pressure 

profile and the geometry of the cross-section are known. Clearly, for a hydrostatic profile, w = ¦ =1. Note that since the pressure centroid includes the location variable, the above centroids can be 

also expressed through the first and second statistical moments of pressure. Interestingly, the 

latter expression can be also regarded as the cross-correlation between pressure and depth. 

Similarly, the velocity centroid could be defined and simulated but since this is not directly 

included in the conservation of the momentum rate, it can be neglected. Also, for the pressure 

parameter, Ohtsu et al. (2004) proposed an expression through the cross-correlation between 

velocity and pressure. However, as shown in the companion work of Dimitriadis et al. (2019b, 

sect. 3.1.3 and 3.3), for typical flows the effect of conserving or not the pressure centroid through 

the first two moments of pressure or depth, does not significantly alter their profiles. 

If we assume a hydrostatic pressure model then, both magnitudes can be explicitly estimated 

through only �F and �G. In fact, the hydrostatic profile emerges when the probability distributions 

of both are linearly linked through � = �� + �F
/�§cosª
, where § = �� and cosφ is the local 

channel slope. For example, in a rectangular cross-section of width w and depth d, e =§�'%/2/cosª exerted at �¤ = '/2/cosª, with �¤ = 2'/3/cosª measured from surface. However, 

in the general case that we examine here, we have no information on the pressure profile; and are 

interested in conserving its mean value and centroid. We note that the effect of the force caused 

by gravity and the mean shear stress at an infinitely thin cross-section is assumed negligible 

compared to the other forces. 

Therefore, for the linear momentum rate to be fully conserved, we must also conserve β (since 

water density � is considered fixed), which is linked to the second-order raw moment of velocity: 

E|�%} = C �%?���
d�u
� = 1� C �%��
d�� = ¡�E|�}�%

 (37) 
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where ¡ ≥ 1 is the, so-called, Boussinesq (1877) coefficient (Chanson, 1999), and is linked to the 

coefficient of variation ¬ = ®/  = ¯�E|�%} − �E|�}�%� /E|�} = °¡ − 1, with σ the standard 

deviation of the velocity, i.e. ® = ¯E ¢�� −  �%£. 

Finally, the mean total energy transfer rate (power) for the cross-section is ��� �± + �²³ +
h%: �%/�% + ´�; this can be conserved through again the mean pressure height, which is linked to 

the absolute pressure divided by §, and the mean potential energy height ±, which equals the area 

centroid � that is already conserved through the linear momentum rate. Again, only for a 

hydrostatic profile the sum of the mean potential energy height and the pressure heights is 

constant and equal to �G. 

The coefficient a is linked to the third-order raw moment of velocity: 

E|�µ} = C �µ?���
d�u
� = 1� C �µ��
d�� = )�E|�}�µ

 (38) 

where ) ≥ 1 is the, so-called, Coriolis (1836) coefficient (Chanson, 1999), and can be linked to the 

coefficient of skewness ¬¶ = ·/®µ = �E|�µ} − 3 E|�%} + 2 µ�/� ¬
µ = �2 + ) − 3¡
/�¡ −1
µ/% or ¬¶ = �) − 1 − 3¬%�/¬µ, with k the skewness of the velocity, i.e. · = Ev�� −  
µy. Note 

that for large variability coefficient with ¬ > °�) − 1
/3 we have that ¬¶ < 0, while in case of a 

symmetrical probability distribution of velocity, i.e. ¬¶ = 0, we have that ) = 3¡ − 2 ≥ ¡. 

Interestingly, Rahimpour (2017) has shown that in rectangular channels this expression 

approximately holds, and so, the velocity distribution can be well approximated in typical 

scenarios by a Gaussian distribution (see also conclusions in Dimitriadis et al., 2019; 2019b). 

One may also approximate the energy losses based on empirical expressions, such as the Manning 

(for open-channels) or the Darcy-Weisbach (for pipe flow) equations, which depend on 

parameters explicitly determined by variables such as the area of the cross-section, the Reynolds 

number (e.g., for the friction coefficient in pipe flow) or the ratio of the square root of the energy 

slope over the Manning roughness coefficient (in open-channel flow). Note that although implicit 

models also exist for the Boussinesq and Coriolis parameters (e.g., Temple, 1986), here we wish 

to preserve them explicitly through the velocity distribution under the discussed methodology. 

Since here we are interested in the absolute value of the spatial velocity derivative (i.e., with 

respect to location) there is no need to add parameters related to the magnitude and location of 

the maximum velocity. After estimating the velocity derivative, we may adopt reasonable 

assumptions on the flow conditions and on the shear stress and estimate the actual value of the 

velocity, and thus, its profile. For example, for ordinary cases of open-channel flows or pipe flows 

the flow conditions are expected to be turbulent (and thus, the momentum and energy coefficients 

may be assumed constant, e.g. close to 1, for a large variety of streamflow), and the velocity is 

expected to increase when moving away from boundaries due to the decrease of the shear stress 

initiated by the water viscosity and friction (e.g., Guo and Julien, 2005). In flows where only one 

boundary parallel to the flow exists (e.g., channels with large width to depth ratio), the derivative 
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of the velocity with respect to the distance from the boundaries is always positive, and thus the 

maximum velocity occurs at the water surface. However, in cases where the effects from the shear 

stress cannot be ignored at the water surface (e.g., Rajaratnam and Muralidhar, 1969) or at the 

side boundaries (e.g. channels with small width to depth ratio or pipes; Yang et al., 2004), the 

maximum velocity will occur below the surface for an open-channel or close to the center for a 

pipe flow. Since we assume that the velocity and location are defined in such a way to be bijective, 

the maximum velocity and its location in the cross-section can be easily determined by the velocity 

and corresponding location where the ratio of their probability distributions functions is 

maximized (see applications in the companion work of Dimitriadis et al., 2019b, sect. 3.1.2, 3.2 

and 3.3). 

3.3. Probability distributions for the longitudinal velocity, pressure and 

depth under entropy maximization 

As shown in the previous section, the one fundamental and the three typical hydraulic conditions 

for the one-dimensional analysis of a natural river correspond to the conservation of the expected, 

variance and skewness values of the longitudinal velocity, the expected (and variance) of the 

depth and pressure height, provided that the energy losses can be explicitly determined by the 

remaining values. Other cases may involve the need to conserve additional quantities as for 

example the angular momentum or vorticity. In such cases, additional parameters must be 

introduced related to the variables of interest. 

Therefore, the maximized entropy probability distribution for the pressure height and water-

depth result in the exponential distribution (abbreviated ME1; where wx = 0 for m > 1, w1 > 0) 

or, in cases where the pressure centroid is important to be conserved, to the lower-tail truncated 

(for �, � > 0) Gaussian one (abbreviated ME2; where wx = 0 for m > 2). The resulting distribution 

for the velocity is the three-parameter maximized entropy distribution (abbreviated ME3; where wµ > 0). In cases where the discharge (or equivalently the average area and velocity) tends to very 

large values (theoretically to infinity), the distribution of the depth and the velocity tends to the 

uniform distribution (abbreviated as ME0; where w� = ln ��G − �F
 and ( = ¡ = 1 for the 

velocity). When ¬ = 1, the velocity distribution is the ME1 (with ¡ = 2 and ( = 6), while when ¬ < °π/2 − 1, the velocity distribution is the lower-tail truncated (for � > 0) Gaussian 

distribution (where wx = 0 for m > 2), respectively (for intermediate values of the ¬ the 

distribution is J-shaped between the two; Koutsoyiannis, 2005). We note that in case no 

constraints are conserved for the depth and velocity the derived velocity profile is the one-

dimensional plane Couette flow, i.e. � = �x�1 − 	/'
, that corresponds to the laminar flow of a 

viscous fluid (i.e., constant shear stress along the vertical) between two parallel plates, one of 

which is moving relative to the other with �x (e.g., Case, 1960). 

In all the above cases, the location variable follows the uniform distribution ME0, i.e.: 

�9��
 = � − ���x − �� (39) 

The exponential probability density distribution for the velocity (ME1) low-truncated at zero (i.e., 

no-slip boundary condition) is (similarly for pressure and depth): 
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?���
 = e2��2�<� (40) 

where   = E|�}, w� = ln� 
 and w1 = 1/ , while w� = ln ��1 − e2�<�D�/w1� and   = �G/�1 −
e2�<�D − 1/w1� for the higher-tail truncated distribution at �G (see also Chiu, 1989). 

The low-truncated Gaussian distribution for the velocity (ME2), when conserving the first two 

constraints, is (similarly for pressure and depth): 

?���
 = ª��;  º, ®′

1 − ¼ ��E2½¾

¿º ;  º, ®′� (41) 

where  ′ and ®′ are the mean and standard deviation without the truncation effect, ª��;  º, ®′
 =e2���2½¾
/√%¿ºÀ
À/√2π®′% is the Gaussian density distribution function, ¼��
 = 1/2 + 1/2�erf ��� −  º
/√2®′%
� is the probability distribution function at x, erf��
 = � e2ÃÀd�Ä2Ä /√π is the 

error function, while the mean, variance, skewness and the corresponding w�, w1 and w% can be 

found in Koutsoyiannis (2005; supplementary material). For the unbounded velocity (e.g., in cases 

where the velocity can be negative) and high-truncated distributions (maximum velocity is either 

observed, fixed or specified), we set ¼���F −  º
/®º
 to 0, and 1 to ¼���G −  º
/®º
, respectively. 

The ME3, when conserving all three constraints for the velocity, is ?���
 = e2�����<���À�À��Å�Å�, 

which exists only for a low-truncated variable at vo. We may employ this density distribution by 

estimating the Lagrangian multipliers through an indirect approach rather than through the 

traditional Newton-Raphson numerical approximations (Mead and Papanicolaou, 1984; 

Rockinger and Jondeau, 2002; Santana et al., 2006). Since the ME3 is difficult to handle (see also 

the analysis and application in Kumbhakar et al., 2019a), we may employ a flexible three-

parameter version of the Pareto-Burr-Feller distribution (PBF; see discussion and references in 

Koutsoyiannis et al., 2018), which is found to adequately describe several processes varying from 

local turbulent scales (e.g. Dimitriadis et al., 2016) to hydrometeorological scales (Dimitriadis, 

2017; Dimitriadis and Koutsoyiannis, 2018) and is also linked to the entropy maximization under 

the first three generalized K-moments (Koutsoyiannis, 2020). At the end, we may fit the fitted PBF 

to the ME3 and implicitly estimate its parameters (see application in Dimitriadis et al., 2019b, sect. 

3.1.2). The examined version for v > 0 is also known as Pareto IV or BurrXII distribution and its 

probability distribution function is: 

����
 = 1 − �1 + ��/�1
�À  
2�Å   (42) 

where Ev�y = �1Γ��µ − 1/�%
Γ�1 + 1/�%
/Γ��µ
, Ev�%y = �1%Γ��µ − 2/�%
Γ�1 + 2/�%
/Γ��µ
 

and Ev�µy = �1µΓ��µ − 3/�%
Γ�1 + 3/�%
/Γ��µ
, and the density distribution can be easily 

derived from ?���
 = d����
/d�. For the truncation of this distribution at �G, we divide the 

distribution and density function with ����G
. 
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We observe that the ME3 distribution (similarly the PBF) has three parameters, same as the 

proposed approach for the dip-phenomenon in Chiu (1988), but it additionally conserves 

explicitly the velocity variance and skewness, whereas the established approach implicitly 

simulates their effects through the parameters of the maximum velocity magnitude and location 

in the cross-section. 

A final remark is that a difficulty of the presented formulation for the velocity is to estimate the 

first three raw moments based on the monotonic function ̀ ��
, so that the three raw moments for 

the ���
 are correctly conserved. The formulation for the water-depth is easier to perform due to 

its monotonic behaviour. Finally, while in most cases, the pressure varies also monotonically with 

depth, in the companion work of Dimitriadis et al. (2019b, sect. 3.1.3), an application is shown 

where pressure is not monotonic, due to presence of a cavity. 

To conclude the proposed methodology for deriving the velocity, pressure and water-depth 

profiles consists of the following steps (several applications are shown for all variables in the 

companion work of Dimitriadis et al., 2019b): 

 The reference level and axis origin are set in such way so that the variables of interest 

increase in a positive or negative monotonic behaviour with respect to the location. For 

the pressure and water-depth and for open-channel flows they are usually set at the water 

surface and at the vertical passing from the centroid of the cross-section area, while for 

pipe flows the reference level is set at the soffit of the pipe coinciding with the axis origin. 

For the velocity it can be set at the location with the smallest effect from boundaries, which 

is usually at the point where the maximum velocity is expected to occur. We stress that 

the latter location depends only on the selected velocity distribution and the geometry of 

the cross-section. 

 For the pressure and depth, we assume the ME1 or ME2 distributions for typical flow 

conditions, while for the velocity we assume either the ME0, ME1, ME2 or ME3, depending 

on how many raw moments we wish to conserve. 

 The absolute spatial derivatives of the inverse functions for the velocity, pressure and 

depth can be derived from Eq. 6, whereas the solution for the function ζ(s), ψ(s) and ω(s), 

respectively, for a uniform sampling distribution is given by Eqn. 7 or 8. 

 Depending on the type of flow we decide upon the monotonic or non-monotonic solutions 

of the previous step. For example, in common type flows (e.g., open-channel with large 

width-to-depth ratio and pipes) shear stress is expected to increase with respect to depth. 

In case two (or more) monotonic areas of the derivative exist (e.g., as in the dip-

phenomenon), based on the previous assumption, shear stress should reach a maximum 

value and then follow a trend with a different sign than before the location of its maximum. 

 Based on the observed, fixed, specified or unbounded values of the variables at 

boundaries, we derive the requested profiles for the velocity g(s), pressure p(s) and depth 

w(s), by appropriately formulating ζ(s), ψ(s) and ω(s), based on the assumption(s) of the 

previous step (e.g., see Eqs. 9-11 for non-monotonic cases). 
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4. Conclusions 

In this study, we are interested in the streamwise velocity, pressure and water-depth spatial 

deterministic profiles in a cross-section under incompressible one-dimensional steady flow 

dynamics. For this, we revisit the probabilistic-deterministic framework of Chiu (1988), where 

the profiles can be determined if the above variables are treated as random. We particularly focus 

on the absolute values of the spatial derivatives of the three variables with respect to the spatial 

location, also treated as random, and we show how their values can be linked to the probability 

distribution functions of the actual variables. We then derive the distributions of the latter based 

on the assumption of monotonic behaviour and on the principle of entropy maximization with 

typical hydraulic conditions and statistical constraints implemented in one-dimensional steady 

flow analysis (i.e. conservation of mass, linear momentum rate and energy rate in a cross-section). 

The implemented distribution for the spatial location is the uniform one, and the derived 

distributions for the pressure and water-depth are the exponential or the Gaussian one, and for 

the velocity a three-parameter one, which is discussed how it can be approximated well by the 

flexible Pareto-Burr-Feller distribution. Finally, we demonstrate how to derive the actual profiles 

from the above distributions. A limitation of the proposed methodology is that sometimes the 

derived profiles can be too complicated to express through analytical formulas and can be only 

numerically approximated, especially when the additional variance and skewness constraints are 

used. 

Through theoretical arguments, we show that the above configuration exhibits several advantages 

as compared to the established analysis, where the variables themselves are explicitly analysed 

and not through their absolute derivatives. Specifically, we discuss how the velocity profile can be 

constructed without any knowledge on the isovels. Moreover, we show how the original von 

Kàrman profile can be derived from the maximization of entropy based on some reasonable 

assumptions on the absolute spatial derivative of velocity. Furthermore, we present a 

methodology for determining the position of the maximum velocity along a vertical, which may 

not be located at the water surface (so-called dip-phenomenon) without including an explicit 

model parameter for it. In the companion work of Dimitriadis et al. (2019b), we show applications 

where this phenomenon can be simulated by the probability distribution of the velocity through 

the parameters related to the variance and skewness. 

Obviously, by increasing the deterministic constraints (i.e. information) we have on the velocity, 

pressure and depth profiles, the results will be closer to reality. However, the probabilistic-

deterministic framework, as compared to the traditional purely-deterministic ones, can 

practically handle the effects at the flow from the so-called temporal and spatial random 

fluctuations of the velocity (e.g. Reynolds stresses), pressure and depth as well as from other 

sources of uncertainty (e.g. sampling errors), it can maximize the effect on the flow from each 

known and observed information in the form of hydraulic conditions and statistical constraints, 

and it is easier to implement. 
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