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Abstract: Time series analysis is a major mathematical tool in hydrology, with the moving average
being the most popular model type for this purpose due to its simplicity. During the last 20 years,
various studies have focused on an important statistical characteristic, namely the long-term per-
sistence and the simultaneous statistical consistency at all timescales, when different timescales
are involved in the simulation. Though these issues have been successfully addressed by various
researchers, the solutions that have been suggested are mathematically advanced, which poses a
challenge regarding their adoption by practitioners. In this study, a multilayer perceptron network is
used to obtain synthetic daily values of rainfall. In order to develop this model, first, an appropriate
set of features was selected, and then, a custom cost function was crafted to preserve the important
statistical properties in the synthetic time series. This approach was applied to two locations of
different climatic conditions that have a long record of daily measurements (more than 100 years for
the first and more than 40 years for the second). The results indicate that the suggested methodology
is capable of preserving all important statistical characteristics. The advantage of this model is that,
once it has been trained, it is straightforward to apply and can be modified easily to analyze other
types of hydrologic time series.

Keywords: time series analysis; stochastic model; machine learning; genetic algorithms; persistence;
Hurst–Kolmogorov

1. Introduction

Stochastic models first appeared in hydrology in the early 1950s in the 1954 work of
Barnes [1], who generated a 1000-year sequence of mutually independent synthetic annual
inflows to design a reservoir on the Upper Yarra river in Australia. Later, Thomas and
Fiering [2] introduced the first stochastic model that was capable of reproducing some
characteristics of the statistical properties of the natural process. Over the years, various
stochastic techniques appeared, with the most popular being the autoregressive models
(AR), the moving average models (MA), and their combination (ARMA), which are also
known as Box-Jenkins models [3].

Since the introduction of the stochastic models, and after extensive research in this
scientific area, various challenges have been highlighted. For example, the magnitude
of the autocovariance of the generated time series decays exponentially unless specific
techniques are employed [4]. Another challenge is when the time window of the studied
hydrologic process extends over different timescales, e.g., generating daily rainfall time
series with a length of hundreds of years. In this case, a single model cannot simultaneously
focus on the stochastic properties at multiple scales [5].

To cope with these issues, various researchers have suggested approaches that preserve
the Hurst coefficient [6] and the autocovariance structure of all time scales with a minimal
number of parameters [4]. This statistical property is very important in water management
applications because it is related to “the tendency of wet years to cluster into multi-year wet
periods or of dry years to cluster into multi-year drought periods” [7]. Furthermore, the
stochastic modeling of long time series extending over multiple scales, has been dealt with
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by utilizing coupling of stochastic models of different time scales [5]. A series of iterations
is performed in order to “synchronize” the lower-level and the higher-level models (i.e.,
achieve a statistical consistency between these two timescales). This approach requires
advanced mathematical frameworks and, hence, specialized tools [8,9].

Other models go one step further by incorporating spatially distributed data obtained
by either remote sensing devices (e.g., weather radar and satellites) [10] or from general
circulation models [11] or earth system models [12]. These two-dimensional weather gen-
erators follow a multi-stage approach to blend the higher-scale information into the lower
scale. The stages include the spatial downscaling of the input data and then the temporal
downscaling with a stochastic model (by adjusting the model parameters according to the
predicted changes from large-scale climate model), and finally, the restoration of the statis-
tical dependencies including the inter-annual variability regarding the long-term trends.

Hydrologic approaches based on rigorous mathematical frameworks are important
because they help to obtain insight into the complicated properties of the hydrologic pro-
cesses. On the other hand, various studies have suggested that black-box approaches,
like machine learning, can be used in hydrological applications as more straightforward
methods [13]. For example, Shuang and Zhao have used various machine learning ap-
proaches (MLP network, AdaBoost, Gradient Boosting Decision Tree) to obtain a prediction
of the water demand [14]; Rozos has employed an MLP network to optimally manage a
complex water supply system [15]; Shin et al. [16] used a Long Short-Term Memory (LSTM)
network to evaluate the impact of the groundwater withdrawal on the groundwater level;
Niaghi et al. [17] tested various machine learning approaches regarding their efficiency to
estimate the reference evapotranspiration; and Minns and Hall [18] used a feedforward
network in rainfall-runoff modeling.

The reason for the popularity of the machine learning methods is their conceptual
simplicity and their broad scope of application, along with standardized methodology.
Though there are plenty of machine learning applications in time-series analysis, most
of them are employed at short-term forecasting or surrogate modeling. There are barely
any applications in generating synthetic time series. For example, Campos et al. [19] used
a neural network to generate synthetic time series of monthly reservoir inflows that is
equivalent to an AR(1) model.

In this study, we are proposing the use of a multilayer perceptron (MLP) network [20]
for stochastic synthesis of daily rainfall time series. This MLP-based approach is novel be-
cause, in contrast to the existing similar approaches, it reproduces the statistical properties
of the corresponding historical time series at multiple scales (Hurst effect). We call this
model MLPS. We chose MLP, a half-century-old approach, instead of a more recent type of
deep learning network for two reasons. First, we found MLP to be sufficiently powerful
despite being parsimonious (only a few dozen parameters). In contrast, the deep learning
networks tend to employ a much larger set of parameters, from hundreds up to millions
(e.g., AlexNet). Second, our motivation is to provide a stochastic model that is fairly simple
to implement, even in a spreadsheet [21], a tool with which practitioners, and stakeholders
in general, are familiar so that the proposed method has good chances of being adopted by
this important community.

2. Materials and Methods
2.1. MLPS
2.1.1. Input Features

The generation of features (i.e., the inputs to the network) is based on formulas
(Equation (1) below, and a random number generator) with cyclostationary parameters
(e.g., a different parameter value for each month of the year). Therefore, the dates of the
synthetic time series should be defined before anything else. The MS Excel date format was
used [22] to represent the dates (see Appendix A). For handling the dates, an appropriate
function [23] was used to decode a serial number to the corresponding month (used for
generating cyclostationary signals) and year (used for aggregating up to annual scale).
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The input features were selected to mimic the practices of the previous relevant studies.
For example, a symmetric moving average for the annual independent and identically
distributed innovations (IIDIs) was used, following Koutsoyiannis’ study, [4], whereas,
inspired by the Chen et al.’s study [24,25], a first-order Markov chain in the generation of
daily IIDI was employed.

The daily IIDIs were generated employing a method similar to that used by Richardson
and Wright [26]. Initially, a first-order two-state Markov chain was used to generate the
occurrence of wet or dry days with the following equation:

si = (si−1 ≡ 1∧ P11m > θi) ∨ (si−1 ≡ 0∧ P01m > θi) (1)

where si is the state of the day i (1 for rainy, 0 for non-rainy); P11m (estimated from
the historical daily time series) is the probability of the day i of month m of the year
(m = 1, ..., 12) being wet if the day i− 1 is wet; P01m is the probability of the day i of month
m being wet if the day i− 1 is dry; θi is a random number following uniform distribution.

Then, random numbers v′i following a two-parameter Gamma distribution were
generated. Different Gamma parameter values were employed for each month of the year
(cyclostationarity). To estimate the parameters of the Gamma distribution for the month m,
a Nelder-Mead simplex algorithm [27] was employed to minimize the distance between the
distributions F̂m and Γ(αm, βm), where F̂m is the empirical distribution of the daily non-zero
depths of all historical rainfall values of month m and Γ(αm, βm) is the Gamma distribution
with the optimized parameters αm and βm.

Finally, the daily IIDIs were obtained with the z-score normalization [28]

vi =
(siv′i)− µv

σv
(2)

where µv and σv are the mean and the standard deviation of the time series siv′i.
The annual IIDIs, Vi, were generated employing also a two-parameter Gamma dis-

tribution. The two parameters (a single set, no cyclostationarity) were obtained, like
previously, with a fitting procedure employing a Nelder–Mead simplex algorithm. These
annual values were initially disaggregated to the daily scale (the time step of the stochastic
model), keeping the same value for each day belonging to the same year; then, a moving
average was applied with a window of 365 days to smooth out the time series. Note that
this smoothing does not induce a central limit theorem effect, because at each summation
of the moving average, the 365 values are repetitions of only 2 unique random values
(corresponding to two consecutive years). After applying z-score normalization to the
smoothed time series, the annual IIDIs were obtained.

After obtaining vi and Vi, the features were assembled into a matrix of 14 columns, of
which each row F i is given by the following equation.

F i =
[
Vi (Vi−365·1 + Vi+365·1) ... (Vi−365·6 + Vi+365·6) vi vi−1 ... vi−6

]
(3)

2.1.2. Topology

The optimum topology of the network was found to be 2-2-1 (i.e., two hidden layers).
This topology, for 14 inputs, introduces 39 parameters, i.e., 34 weights and 5 biases. The
activation function for the last layer was ReLU, whereas LReLU was used for the remaining
layers [29]. ReLU is ideal for this application, because it not only facilitates the faster
training of the network but also ensures the non-negative values for precipitation. LReLU
was used for the other two layers to avoid the ’dying ReLU’ problem [29]. The topology of
the network is displayed in Figure 1.
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Figure 1. The topology of the MLPS network.

2.1.3. Cost Function

The performance of a network, i.e., the average difference between the actual yi and
the simulated values ŷi, is measured with the cost function [30]. The most typical cost
function is the Mean Squared Error (MSE), which for the vector x, containing the weights
and biases of the network is given by Equation (4).

C(x) =
n

∑
i=1

(yi − ŷi(x))2 (4)

Besides MSE, there are plenty of alternative cost functions (e.g., MAE, Entropy Loss,
Divergence Loss, etc., [31]). All of these have one thing in common: they penalize the
deviation of the simulated values from the target values (the historical values in our case).
It becomes evident that such a kind of cost function is not suitable for MLPS because the
objective is to preserve the statistical structure, not to fit the output to the historical values.

After many experiments, the objective function was fixed on Equation (5), in which
16 metrics (referred to as scalar function D(, )) were combined to obtain a single value.

C(x) =
[
W1...W16

]
·



D([ n1Si
n1S

]i=1...k1, [ n1Hi
n1H

]i=1...k1)

D( n1Sk1
n1S

, n1Hk1
n1H

)

D([ n2Si
n2S

]i=1...k2, [ n2Hi
n2H

]i=1...k2)

D( n2Sk2
n2S

, n2Hk2
n2H

)

D([ n3Si
n3S

]i=1...k3, [ n3Hi
n3H

]i=1...k3)

D([ n4Si
n4S

]i=1...k4, [ n4Hi
n4H

]i=1...k4)

D( n4Sk4
n4S

, n4Hk4
n4H

)

D([ρSl ]l=1...lmax , [ρHl ]l=1...lmax)
D(σ365S, σ365H)

D([σ12Si]i=1...12, [σ12Hi]i=1...12)
D([µ12Si]i=1...12, [µ12Hi]i=1...12)

D(rS, rH)
D(µ̃4S, µ̃4H)
D(µ̃3S, µ̃3H)
D(σS, σH)
D(µS, µH)



(5)
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where x is the vector containing the weights and biases of the MLPS network; [W1...W16]
are the weights of the 16 metrics, which, after numerous trials, were fixed to the val-
ues [2, 2, 2, 2, 2, 2, 2, 4, 10, 10, 10, 10, 10, 10, 10, 100]; D(, ) is given in Equation (6); n1Si is the
number of the sample values lying within the i-th interval (i.e., the histogram; see [32],
Equation (5.1)) of the event duration of the synthetic time series (subscript ’S’ is for syn-
thetic) obtained by the MLPS network when run with the values of weights and biases of x;
n1S = ∑k1

i=1 n1Si; k1 is the number of intervals into which the space of the event duration is
discretized (the same discretization of space is used for both historical and synthetic time
series); the following six metrics, with the indexes 2, 3, 4, refer to the dry spell duration,
annual rainfall depth, and daily rainfall depth, respectively; ρSl is the l-lag auto-correlation
of the aggregated to annual scale synthetic time series; σ365S is the standard deviation of the
annual values of the synthetic time series; σ12Si is the standard deviation of the synthetic
time series values of the ith month of the year; µ12Si is the mean value of the synthetic time
series values of the ith month of year; rS is the lag-1 auto-correlation of the daily synthetic
time series; µ̃4S is the kurtosis of the daily synthetic time series; µ̃3S is the skewness of
the daily synthetic time series; σS and µS are the standard deviation and the mean value
of the daily synthetic time series, respectively. Please note that for the typesetting, the
IAHS guidelines [33] are followed to improve the clarity of the employed symbols. That is,
textual subscripts are in upright (Roman) font. For example, the textual subscripts S and H
correspond to synthetic and historical time series, respectively. Therefore, the definitions of
the corresponding variables for historical (subscript ’H’) time series can be easily derived
from the previous ones.

D(a, b) = mean([d(ai, bi)]i=1,..,n) (6)

where a, b are vectors of size n and d(a, b) = |a− b|/ max(min(|b|, |a|), δ). The tolerance
coefficient δ (a kind of measure of the significance of the decimal precision) is used to
avoid awarding large penalty values to deviations of minor significance. For example,
suppose the mean value of the wet month is 5 mm/day and the mean value of the dry is
0.05 mm/day; then, a 0.1 mm/day output from the stochastic model for the dry month
is considered satisfactory. Adopting a δ value equal to 0.1 allows to give to this model
output a penalty of only 0.5 instead of 1.0 without using δ. Equation (6) is actually the
mean absolute error, which gives more weight to the agreement between the average rather
than the peaks of the compared values [34].

The value of lmax in Equation (5) is selected after a preliminary analysis of the historical
time series to include all significant ρHl values.

Note that, (i) in the metrics 1, 3, 5, and 6, the relative number of samples of the historical
time series that are 0 are not taken into account in D(, ). These 0 values, appearing as gaps
in the middle of the histogram of the historical values, are considered artifacts. (ii) The
second, forth, and seventh metrics introduce an extra penalty to the failure of preserving
the frequency of the most extreme value.

2.1.4. Training

The MLPS network training was accomplished with Genetic Algorithms (GA) [35]
instead of the standard backpropagation approach [36]. GA is much slower than any
optimization method based on backpropagation. However, the latter is based on the chain
rule (e.g., see [30]), which cannot be applied, since there is no closed-form expression of the
derivative of Equation (5) with respect to the MLPS network output.

The parameters of the GA were as follows: population size 200, maximum number
of generations 800, crossover fraction 0.8, Scattered crossover faction, Gaussian mutation
function, elite count 2, scale and shrink both equal to 1. At each generation, 200(1− 0.8)− 2
individuals were mutated. The initial population followed a uniform distribution with
values from −10 to 10 (note that GA is not that sensitive to the values of the initial popula-
tion like gradient-based methods, which suffer from the problem of exploding/vanishing
gradients [37]).
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To ensure that the network generalizes well, the training was performed with synthetic
time series of significant length. For example, this length (actually the maximum value of
index i in Equation (3)) was 360,000 days in both case studies presented below.

During the training, bootstrapping was employed [38]. According to this technique,
a different subset of the features was used at each cost function evaluation. This subset
should be continuous corresponding to consecutive days. The size of the subset was 20%
of the length of the features. This technique not only reduces the computational time (since
the metrics of Equation (5) are applied on shorter time series) but also helps to improve the
model generalization [39].

MLPS was implemented in MATLAB language. GNU Octave (MATLAB open source
equivalent) was used in this study to run MLPS. A GA implementation that supports
parallel computing [40] was used to accelerate the model training. MLPS was run on a
virtual server with eight cores [41].

2.2. WeaGETS

WeaGETS [24] was used as a reference model to evaluate MLPS performance. WeaGETS
is a single-site stochastic weather generator (Tmin, Tmax, and rainfall). At the daily time
step, first-order Markov chain is employed to switch between dry and wet days. The
rainfall depth of the days that are deemed wet is obtained with a random number gen-
erator (alternative distributions are available). Then, to account for the low-frequency
variability, the daily rainfall depth is corrected using power spectra of the observed time
series at monthly and yearly scales. A method similar to coupling of stochastic models
suggested by Koutsoyiannis [5] was also employed. The parameters used in WeaGETS
were the following:

0.1 Daily precipitation threshold
700 Number of years to generate
No Smooth the parameters of precipitation occurrence and quantity
1 Order of Markov Chain to generate precipitation occurrence
Skewed normal Distribution to generate wet day precipitation amount
Unconditional Scheme to generate maximum and minimum temperatures
No Correct the low-frequency variability of precipitation

It should be noted that MLPS is not compared against WeaGETS in terms of perfor-
mance superiority. MLPS’s advantage is its conceptual simplicity and straightforward
applicability and not any improvement in performance against established models. In fact,
WeaGETS was intentionally handicapped by turning off the correction of the low-frequency
variability of precipitation. The motive for this was to demonstrate the significance of the
long-term persistence effect in time-series analysis.

3. Results
3.1. Application to Hohenpeissenberg

The historical rainfall time series measured at the Hohenpeissenberg Observatory was
obtained from Deutscher Wetterdienst. The climate of this location is oceanic (Köppen: Cfb),
affected by altitude and proximity to the Alps. The time series starts on the 1 January 1879
and ends on 31 October 2020.

The comparison of the overall statistics of the synthetic time series and historical
time series obtained from the weather station of Hohenpeissenberg is given in Table 1.
Both models preserved all statistical characteristics well, with the exception of the auto-
correlation with 1-day lag of the time series of WeaGETS.

Figures 2 and 3 display the monthly mean and standard deviation of the synthetic
and historical values of the Hohenpeissenberg weather station. According to these figures,
both models satisfactorily preserved the monthly mean value and the standard deviation.
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Table 1. Statistics of the synthetic time series of WeaGETS and MLPS and of the historical time series
of rainfall on Hohenpeissenberg.

Hist. WeaGETS MLPS

Standard deviation—year 170 137 179
Mean—day 3.09 3.08 3.08

Standard deviation—day 6.57 6.50 7.07
Skewness—day 4.28 4.41 4.08
Kurtosis—day 33.4 35.2 27.8

Auto correlation—day 0.23 0.12 0.23

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

(Month)

(m
m

)

Mean

Historical

WeaGETS

MLPS

Figure 2. Monthly mean of the synthetic (WeaGETS and MLPS) and historical time series of the
Hohenpeissenberg weather station.
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Figure 3. Monthly standard deviation of the synthetic time series (WeaGETS and MLPS) and historical
values of the Hohenpeissenberg weather station.

Figure 4 displays the histogram of the daily time series of the synthetic and historical
values. To properly interpret this plot, it should be kept in mind that the longer the bar
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above the horizontal axis, the higher the frequency, whereas the longer the bar below the
horizontal axis, the lower the frequency. For example, the long bars at depths greater than
100 mm correspond to frequency values very close to 0 (no bar is plotted for the values that
are equal to 0). According to this figure, both models performed very well.

Figure 5 displays the histogram of the annual (aggregated from daily time step with
plain summation) synthetic and historical time series.
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Figure 4. Histogram of the daily synthetic time series (WeaGETS and MLPS) and historical values of
the Hohenpeissenberg weather station.
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Figure 5. Histogram of the annual synthetic time series (WeaGETS and MLPS) and historical values
of the Hohenpeissenberg weather station.

Figure 6 displays the histogram of the rainfall events’ duration. Both models per-
formed relatively well. Figure 7 displays the histogram of the duration of dry spells.
According to this figure, WeaGETS underestimates the frequency of the dry spells with
long duration.
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Figure 6. Histogram of the event duration of daily synthetic time series (WeaGETS and MLPS) and
historical values of the Hohenpeissenberg weather station.
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Figure 7. Histogram of the duration of dry spells of daily synthetic time series (WeaGETS and MLPS)
and historical values of the Hohenpeissenberg weather station.

Figure 8 displays the climacogram [42] of the Hohenpeissenberg time series. MLPS
fits very well to the marks of the historical time series.

3.2. Application to Gibraltar

The historical rainfall time series measured at the Gibraltar meteorologic station was
obtained from freemteo.org. The climate of this location is Mediterranean (Köppen: Csa).
The time series starts on the 1 January 1974 and ends on the 29 December 2015.

The comparison of the overall statistics of the synthetic time series and the historical
time series obtained from the weather station of Gibraltar is given in Table 2. As in the
previous application, WeaGETS underestimates the 1-day lag auto-correlation.
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Figure 8. Climacogram of the Hohenpeissenberg time series.

Table 2. Statistics of the synthetic time series of WeaGETS and MLPS, and of the historical time series
of rainfall on Gibraltar.

Hist. WeaGETS MLPS

Standard deviation—year 320 201 306
Mean—day 2.07 2.08 2.08

Standard deviation—day 9.44 9.14 9.46
Skewness—day 11.95 9.78 12.43
Kurtosis—day 242.9 188.4 286.4

Auto correlation—day 0.24 0.11 0.23

Figures 9 and 10 display the monthly mean and standard deviation of the synthetic
and historical values of the Gibraltar weather station. According to these figures, both
models preserved satisfactorily the monthly mean value and the standard deviation.

Figure 11 displays the histogram of the daily time series of the synthetic and historical
values. To properly interpret this plot, it should be kept in mind that the longer the bar
above the horizontal axis, the higher the frequency, whereas the longer the bar below
the horizontal axis, the lower the frequency. Both models performed relatively well.
Figure 12 displays the histogram of the annual (aggregated from daily time step with plain
summation) synthetic and historical time series.

Figure 13 displays the histogram of the rainfall events’ duration. According to this
figure, both models performed relatively well. Figure 14 displays the histogram of the
duration of the dry spells. According to this figure, WeaGETS performs very well for the
low and medium values of duration. However, it underestimates the frequency of the
higher duration values. MLPS appears to slightly overestimate the frequency of the higher
duration values.
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Figure 9. Monthly mean of the synthetic (WeaGETS and MLPS) and historical time series of the
Gibraltar weather station.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

Standard deviation

(m
m

)

(Month)

Historical

WeaGETS

MLPS

Figure 10. Monthly standard deviation of the synthetic (WeaGETS and MLPS) and historical time
series of the Gibraltar weather station.
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Figure 11. Histogram of the daily synthetic time series (WeaGETS and MLPS) and historical values
of the Gibraltar weather station.
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Figure 12. Histogram of the annual synthetic time series (WeaGETS and MLPS) and historical values
of the Gibraltar weather station.
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Figure 13. Histogram of the event duration of daily synthetic time series (WeaGETS and MLPS) and
historical values of the Gibraltar weather station.
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Figure 14. Histogram of the duration of dry spells of daily synthetic time series (WeaGETS and
MLPS) and historical values of the Gibraltar weather station.

Figure 15 displays the climacogram of the Gibraltar time series. MLPS fits very well
with the marks of the historical time series, except at greater scales.
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Figure 15. Climacogram of the Gibraltar time series.

4. Discussion

The results of the two case studies suggest that the MLPS performance regarding the
statistical properties related to short-term memory was equivalent to the performance of
an established stochastic model. WeaGETS did not correctly estimate the frequency of the
more extreme events in Figures 5, 7, 12, and 14. This is because of the configuration used in
WeaGETS (see Section 2.2), which was selected intentionally to demonstrate the long-term
persistence effect and its importance in time series analysis. This is also the reason for
the underestimated annual standard deviation of WeaGETS time series (see first row of
Tables 1 and 2). According to climacograms [42] in Figures 8 and 15, this underestimation
is more profound at higher scales.

The climacograms in both Figures 8 and 15 demonstrate a double-bend shape, whereas
the marks of the historical values oscillate at the higher scales. The reason for the first of
the two bends, at the scale of 365 days, is attributed to the annual seasonality [43]. The
second bend is typically observed in time series related with atmospheric phenomena and
is attributed to turbulence effects in the atmosphere [43]. Finally, the oscillations of the
climacogram of the historical time series are because of the limited length of the time series
at the higher scales of aggregation. According to Dimitriadis and Koutsoyiannis [43], these
oscillations appear at the scale at which the length of the aggregated time series is 10% of
the length of the observed time series.

It should be noted that a significant CPU time is required for the training of the MLP
network. It took about half an hour for this procedure on an eight-core machine. However,
once the weight and biases of the network are available, the time required to apply the
network is negligible. Moreover, the implementation of the network is so straightforward
(feed-forward network) that it can be accomplished even in a spreadsheet (an example can
be found in [21]).

The dates of the synthetic time series of MLPS follow the Gregorian calendar, including
leap years. This is important in stochastic forecast [3] applications, since in this case the
dates of the forecast synthetic time series (which start after the end of the historical time
series) increase following the calendar days. The MPLS scheme described previously
does not support stochastic forecast. However, Koutsoyiannis [4] describes a generic
methodology that can be employed with any stochastic model. Specifically, the steps are
as follows: (i) generate the covariance matrix of the known past values employing the
parametric formula of generalized autocovariance structure; (ii) generate the synthetic time
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series with MLPS and obtain, for the common period, the time series of difference between
historical and synthetic; (iii) for each “future” value of the synthetic time series, generate
the vector of the covariances between this “future” value and all past values (the number of
historical values that should be used depends on the properties of the studied system [44]);
(iv) apply a linear formula (Equation (40) in [4]) to properly recondition the MLPS outputs.

Though the MLPS configuration employed in this study is adequate for daily rainfall,
the model could be applied with some adjustment to other type of applications. For
example, for other types of hydrologic variables, like temperature, another approach to
obtain features should be employed (e.g., random numbers following normal distribution,
conditioned on wet or dry status [45]). For other timescales, e.g., hourly, both the features
(e.g., a different type of random number generator) and the cost function (including
statistical metrics for the fine timescale) should change. Finally, for multivariate problems,
one would need to include additional appropriate metrics to Equation (5) (e.g., cross-
correlation at daily scale, annual scale, etc.), some extra features (e.g., a different set of IIDI
for each variable), and an additional output node for each additional hydrologic variable.

Machine learning approaches are often criticized because of the opacity of their inner
workings and the lack of interpretability. Recently, some efforts have been made to blend
existing scientific knowledge with learning algorithms. For example, various researchers
have employed genetic programming [46,47] as an induction framework that finds opti-
mum configurations of a model based on predefined building blocks. This approach, ideal
in cases without sufficient insights regarding the system characteristics, provides some
physical meaningfulness to the employed machine learning models. Other researchers
have modified standard deep learning networks (for example, LSTM) to allow for a set
of static system attributes to be used as inputs. Identification of attribute similarities by
the model corresponds well to what would be expected from prior hydrological under-
standing [48]. In this study, we have tried a similar approach to incorporate scientific
knowledge. More specifically, instead of directly statically using the system attributes
as model inputs, we have carefully selected and prepared the model inputs according
to these attributes/statistical properties (see Section 2.1.1). The employed custom cost
function (see Section 2.1.3) also incorporates scientific knowledge specific to the stochastic
synthesis problem by defining in an abstract manner the desired statistical properties of
the model output.

5. Conclusions

In this study, a multilayer perceptron network, called MLPS, was employed for
producing synthetic daily time series of rainfall. The objective was to develop a tool that

• Preserves the stochastic properties in multiple scales (e.g., daily, annual);
• Preserves the autocovariance structure including the long-term persistence in multi-

ple lags;
• Is straightforward to apply; and
• Can handle a variety of stochastic problems despite being based on a simple concept.

This approach was applied to two locations with different climatic conditions and was
tested against an established stochastic model. The main disadvantage of the proposed
approach is the significant time required for the training of the model. However, the results
of these applications suggest that the previous objectives were accomplished.

The use of the MLPS required an appropriate formulation of the input features and
the cost function. In the two case studies, MLPS generated synthetic time series of rainfall
at a single location. However, the MLPS configuration (the features and the cost function)
could be easily modified to be applied to other types of hydrologic variables, or to support
multivariate modeling. Similarly, after minor modifications, MLPS could be employed in a
stochastic forecast.

The questions that time series analysis is called to answer differ among various
applications. For example, in a dry region, the correct estimation of the frequency of dry
spells is very important for a water management study. On the other hand, in a flood
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protection study, the frequency of the extreme values is of utmost importance. The main
approach of the suggested model is based on the principle ’select what you want to preserve’
(via the metrics and weights of Equation (5)). This gives the flexibility of adjustment
without requiring any fundamental modification of the mathematical framework. Thus,
the suggested model can be easily tailored for each application to emphasize the most
critical statistical property.

Finally, this study demonstrated that scientific knowledge can be infused into machine
learning models by properly preprocessing and selecting the model inputs and by induc-
ing technically in the cost function an elaborated and generic description of the desired
structure and properties of the model output.
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Abbreviations
The following abbreviations are used in this manuscript:

MLP multilayer perceptron
MLPS multilayer perceptron stochastic model
AR auto regressive
MA moving average
ARMA auto regressive moving average
IIDI independent and identically distributed innovations
LSTM long short-term memory
MSE mean squared error
MAE mean absolute error
IAHS International Association of Hydrological Sciences
GA genetic algorithms

Appendix A. The MS Excel Date Format

According to the MS Excel format, the date 1 January 1900 gets, by definition, the serial
number 1. Negative values are used for serial numbers corresponding to dates before the
1 January 1900, and positive values for dates after this date. For example, 1 January 2008
gets the serial number 39,448 because it is 39,447 days after the 1 January 1900. The use
of numerical values for representing dates facilitates the generation of dates for synthetic
time series (e.g., for successive dates of daily time series, increase by 1 the serial number).
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