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Abstract:  The  measurement  of  river  discharge  under  various  conditions  is  of  paramount
importance in hydrology. The traditional method to make a discharge measurement, and the only
option until recently, is very tedious and sometimes even dangerous. For this reason, nowadays,
remote  sensing  techniques  are  employed  to  reduce  the  need  for traditional  discharge
measurements.  Image  velocimetry  is  a  low-cost  remote  sensing  technique  that  is  capable  of
providing the spatial distribution and temporal variation of the surface flow velocities.  In this
manuscript, a simple, fast, and open-source method is presented that employs the LSPIV method
to estimate the flow velocities along a cross-section from a video. This method is applied to four
case studies. The results of these applications are analyzed statistically to examine whether the
identification of the statistical structure of the surface velocities can help to estimate the average
flow velocity of the cross-section.

Keywords: stream discharge, remote sensing, image velocimetry, LSPIV, statistical analysis

1. Introduction

The measurement of river discharge under various conditions is of paramount importance in
hydrological applications [1, 2, 3]. The standard method to make a discharge measurement involves
a series of water depth and velocity measurements in various segments of a cross-section in order to
apply the following equation (see Eq. 5.1 in [4]):

Q= Σ ai vi, with  i =1 … n (1)

where Q is the total discharge, ai is the area of the ith segment of the measured cross-section, vi is the
average velocity of the ith segment of the measured cross-section, and n is the number of segments
in which the cross-section is divided (no fewer than 10 in most rivers, and at least 25 for wide rivers
[4]). It becomes evident that the traditional method, where measurements are taken manually with
a  current  meter,  is  tedious  and,  when  the  flow  velocity  is  high,  as  in  flooding  conditions,
prohibitively dangerous.

A modern technique that is based on the Doppler effect is the acoustic Doppler current profiler
(ADCP). This technique employs a float on which acoustic transducers, GPS, and other equipment
are mounted. The float is dragged along a cross-section to simultaneously perform bathymetry and
velocity measurements. The result is the velocity field over the depth and along the cross-section [5,
6]. The integration of this field gives the total discharge. This equipment is currently very expensive
(tens of thousands of Euros).

Two other popular, and less expensive, remote sensing techniques are the surface flow velocity
radar (SVR) and the image-based method. Both methods provide only surface velocities. For this
reason, some statistical analysis should be employed to obtain the probability distribution of the
velocity, from which the velocity profile (over the depth) can be obtained [7,  8,  9]. SVR requires
specialized equipment and provides measurements only at specific predefined locations. On the
other hand, the image-based method does not require any specialized equipment, other than the
ubiquitous  smartphone  camera,  and can  estimate  the  distribution of  the  flow velocities  over  a
selected  region  of  interest.  For  this  reason,  the  image-based  method,  known  also  as  image



velocimetry, is becoming increasingly popular mainly both because of its low cost and of the sensor
simplicity (a simple camera).  The latter translates into low weight equipment, which allows the
application of this method even from light unmanned aerial vehicles (UAV) [10].

As mentioned above, the core procedure of the image velocimetry is  the processing of the
obtained images (usually the frames of a video). The processing algorithms are classified into two
main categories: those based on particle tracking (e.g., Large-Scale Particle Tracking Velocimetry,
Kanade–Lucas Tomasi,  Optical Tracking Velocimetry, etc.),  and those based on cross-correlation
maximization (e.g., Large-Scale Particle Image Velocimetry, Surface Structure Image Velocimetry,
etc.). An extensive review of these methods, and the corresponding tools, can be found in [11, 12,
13].

The software required for the image velocimetry is highly specialized. For example, PIVlab is
freely available [14], but requires commercial software (MATLAB). OpenPTV is available on many
development platforms (Python, MATLAB, C++), but has not been implemented in MS Windows.
DischargeProcessing of Photrack AG is a commercial product. Additionally, some of these tools
require a considerable amount of time to complete the image processing. An interesting option is
Fudaa-LSPIV  [15].  Fudaa-LSPIV  employs Java  for  providing  a  user-friendly  interface,  but  the
processing algorithms are written in FORTRAN in order to achieve maximum performance. It is
available in both Windows and Linux operating systems.

LSPIV has been applied in engineering applications since 1998 [16], and is the most widely
used and documented methodology [11, 17]. According to Le Boursicaud et al. [18] LSPIV provides
reliable longitudinal flow velocity estimations even with home movies that can be found in social
media. Dramais et al. [19] embraced the idea of using LSPIV to improve the accuracy of rating
curves in high discharges. Le Coz et al. [20] applied LSPIV in a Mediterranean river for a wide
range of  discharges  and found good agreement  with  the  velocities  obtained by ADCP (±10%).
Kantoush  et  al.  [21]  have  demonstrated  the  efficiency  of  LSPIV  in  a  variety  of  engineering
applications.

In this study, we suggest a simple image velocimetry tool based on the LSPIV method. This
tool is developed in MATLAB and is freely available [22]. We find advantageous the development
of such a tool inside a numerical computing environment because it facilitates greatly a statistical
analysis of the results. Our tool is compatible with MATLAB, but also with the open-source Octave,
which  means that  it  can be  applied without requiring installation of any commercial  software.
Furthermore, the code of our tool is only 20 kB (the PIVlab code is 500 kB, most of it dedicated to
the  user  interface).  This  allows other  researchers  to  easily  understand our  code  and modify  it
according  to  their  requirements.  Though we have  not  performed extensive  benchmarking,  our
algorithm appears to be quite fast. PIVlab required 15 min to perform image analysis on 200 frames
[13] to derive the velocity field over an area of 150 m2. Our algorithm required 75 seconds (using
MATLAB) for analyzing 500 HD frames to derive the velocity profile along the line of the cross-
section (analysis run on a 3.5 GHz dual-core CPU laptop). It should be noted that if the processing
speed is of high importance,  then an approach that employs native code for the CPU-intensive
algorithms (e.g., Fudaa-LSPIV) could be a better choice. Therefore, studies that involve non-time-
critical image velocimetry could benefit from our algorithm, especially if there are no resources for
commercial software or if new ideas on image velocimetry are to be tested.

The  suggested  tool  is  applied  in four case  studies.  The  results  of  these  applications  are
analyzed statistically to examine if it is possible to derive a characteristic hydraulic property of a
cross-section that can be related to the average velocity. The most common approach is to link the
average to the maximum velocity of a cross-section [7], which in most natural rivers occurs at or
near the water surface (for a review see [8, 9]). However, these methods require the determination
of an additional parameter (often symbolized as M) for the characterization of the streamflow. It has
been observed that  the average velocity of the cross-section may be  obtained from the average
surface velocity with a standardized error of around 10% [9, 23, 24]. Thus, here, we investigate the
efficiency of two estimators: a) a fraction of the average surface velocity and b) the quantile of the
probability distribution of the surface velocity that is close to the average velocity of the cross-
section.



2. Methods

2.1. Measure flow velocity from video

In general, image velocimetry includes three steps, image pre-processing, evaluation, and post-
processing [25]. Image pre-processing includes applying various filters and operations to the video
frames to facilitate motion detection.  Image evaluation is  applied between successive  frames to
obtain particle displacements. Finally, in the image post-processing, the velocity vector coordinates
are  translated  from  the  image  coordinate  system  (rows  and  columns  of  pixels)  to  real-world
coordinates.  Furthermore,  any  estimated  velocity  that  significantly  exceeds  expected  values  is
discarded.

In our study, the image pre-processing includes application of the Gaussian blur filter, image
subtraction,  conversion  to  greyscale,  and contrast  adjustment.  More  specifically,  to  remove  the
noise from the frames (mainly introduced by video compression algorithms), a Gaussian filter is
applied. An 11×11 mask is employed with a standard deviation of 1 [26]. Then, the video frame i is
subtracted from the frame  i+1. This removes the time-invariant information and leaves only the
temporal changes in order to facilitate motion detection. The resulting images from this subtraction
are  converted  to  greyscale.  Finally,  a  contrast  adjustment  is  applied to  the  contents  of  the
interrogation and search areas according to a parameter that ranges from 0 to 1. All pixels in the
processed area with a value lower than that of the area’s maximum multiplied by the contrast
adjustment parameter are turned off.

In the  image  evaluation,  motion  detection is  applied  between successive  frames  to  obtain
particle displacements (debris, boils, ripples, etc.). The search area and the interrogation area are
concentric rectangles, the centres of which lie on the line of the cross-section, where the discharge is
to be measured. The orientation of these rectangles is selected to have the long edge parallel to the
flow. The higher the flow, the higher should be the ratio of the long to the short edges. To estimate
the average particle displacement, the algorithm employs the fast normalized cross-correlation [27]
between the contents of the interrogation area in the frame i and the search area in frame i+1. The
shift of the interrogation area j contents of the frame i that results in the highest cross-correlation
value  with  the  search  area j contents  of  the  frame  i+1  is  assumed  to  be  the  average  particle
displacement in the  area j between  i and  i+1 frames. This highest cross-correlation value should
exceed a minimum threshold for the displacement to be considered valid.

Image  post-processing  derives  the  flow  velocity.  The  vectors  of  the  previously  obtained
displacements  (vectors  in  the  image  coordinate  system)  are  transformed  into  the  real-world
coordinate system. For this reason, a mapping from the position of the pixels of the image to real-
world coordinates is required. This is called image registration (image registration is a more generic
term that refers to transforming sets of data to a specific coordinate system) or orthorectification.
This  mapping  is  accomplished  with  a  transformation  function.  A  generic  method  to  build
transformation functions has been suggested by Goshtasby [28] that employs a linear combination
of orthogonal polynomials. A much simpler approach, when the plane of the camera film is far
from and parallel to the scene, is the ‘non-reflective similarity’ transformation (see Eq. 1 in [29]). To
determine the parameters of this transformation, the real-world coordinates of only two control
points  of  the  image  are  required.  If  the  position  of  the  camera  does  not  satisfy  the  previous
conditions,  then the ‘projective’  transformation should be used instead (see  Eq.  3  in [30]).  This
transformation requires the real-world coordinates of four control points.

In image post-processing,  the cases where the maximum cross-correlation is obtained from
irrelevant particles are filtered out. For example, suppose that in the frame i the area j contains only
one particle just about to exit the area with the flow, and in the frame i+1, the area j contains only
one particle just entering the area. This may result in a misleadingly high correlation between these
two  irrelevant  particles.  To  avoid  this,  an  upper  and  a  lower  (can  be  negative)  threshold  of
acceptable velocity is employed, above which any estimated value is considered unrealistic.
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Figure 1: Schematic representation of image velocimetry algorithm

This algorithm (see Figure 1) has been implemented in MATLAB code (also compatible with
the open-source platform Octave version 5.1 and later). The algorithm parameters that need to be
defined  in  each  application  are  the  video  filename,  the  minimum  acceptable  correlation,  the
maximum  acceptable  displacement,  the  contrast  adjustment  parameter,  the  coordinates  of  the
control points and the corresponding image coordinates, the type of projection, and the dimensions
and the location of the interrogation and search areas.

2.2. Conventional measurement of flow

The conventional  flow measurements  in the case studies  were performed with the current
meter RedBack. The distance between the verticals of the measurements was 1 m. At each vertical,
measurements were taken at 20, 40, 60, and 80% of the depth. Furthermore, the surface velocity was
measured employing a hand-held microwave Doppler radar. Flow velocity measurements with the
radar were conducted at 3 or 4 locations with equal spans between them.

2.3. Statistical analysis

The statistical analysis of the velocities obtained by the image velocimetry method includes
graphical assessment with histogram plots and selection and fitting of the theoretical distribution
function.

The  histogram is  an  empirical  method to  represent  approximately  the  probability  density
function  of  the  random  variable  that  corresponds  to  the  data.  The  histograms  were  plotted
following the methodology described in section 5.2 of [31].

The  selection  and  fitting  of  the  theoretical  distribution  function  was  performed  with  the
specialized tool EasyFit of MathWave. For each data set, over 55 probability density functions were
assessed employing the Anderson-Darling statistic [32], which gives more weight to the tails than
the Kolmogorov-Smirnov test. According to this approach, the following metric is used to assess the
fitting:

A2 = –n – 1⁄n Σ (2i – 1) ( ln F(xi) + ln(1 – F(xn–i+1) ), with  i = 1 … n (2)

where F is the hypothesized distribution function, n is the number of data points, and xi is the value
of the  ith data point with  xi ≤  xi+1.  For each assessed  F,  the  A2 metric is  used for estimating the
parameters of the distribution F according to the minimum-distance estimation procedure [33].

3. Case studies

3.1. Kolubara River

The first case study is from the publication of Pearce et al. [11], who tested 5 image velocimetry
methods on two neighbouring cross-sections of the Kolubara River, Serbia. The video was recorded
from  a  UAV  with  a  very  high  resolution  (4k,  239  Mbps).  We  obtained  the  reference  points
graphically from Figure 2 of [11]. The ‘similarity’ transformation was used (same as ‘nonreflective
similarity’ with the addition of optional reflection). The required three reference points were the
two crosses at the locations (coordinates from Figure 2 of [11]) (8.77, 3.57) and (15.96, 3.6), and the
ground control point (GCP) at location (26.00, 30.19). The original video included 600 frames at 24



fps, but because of the low flow velocities the video was sub-sampled to produce a video of 4 fps,
which according to Pearce et al. [11] achieves the lowest sensitivity to the LSPIV parameters.

(a) (b)
Figure 2: Comparison of LSPIV results obtained by Pearce et al. [11] and by our algorithm at cross-
sections S1 (a) and S2 (b).

(a) (b)
Figure 3: Histograms of the surface velocities at cross-sections S1 (a) and S2 (b).

The  image  velocimetry  results  obtained  with  our  algorithm  are  compared  against  those
provided in Figure  8  of  Pearce  et  al.  [11]  for  the  cross-sections  S1  and S2.  The  profiles  of  the
velocities obtained by our algorithm and by Pearce et al. are displayed in Figure  2. The profiles
obtained by the ADCP technique are also provided in Figure 2. The average surface velocity of S1
estimated by our  algorithm,  Pearce’s  algorithm, and the ADCP are 0.102,  0.076,  and 0.108 m/s
respectively. The average surface velocity of S2 estimated by our algorithm, Pearce’s, and the ADCP
are 0.100, 0.092, and 0.098 m/s respectively. The magnitude of the difference between the two LSPIV
algorithms is not greater than the magnitude of the differences between the 5 methods tested by
Pearce et al. (see Figure 8 of [11]).

3.2. Loussios river

The second case study is from a cross-section in the Loussios river, Greece (the geographic and
hydrological information of this location can be found at https://openmeteo.org/stations/2039/). The
shape  of  the  studied  cross-section  is  displayed  in  Figure  4.  Figure  4 also  gives  the  flow
measurements  obtained  with  the  conventional  current  meter.  Using  these  measurements  in
equation (1),  the discharge is estimated at 4.77 m3/s in the cross-section of area 5.34 m2,  and the
average velocity is Vav  = 4.77/5.34 m/s = 0.89 m/s (the arithmetic average is 0.86 m/s).

https://openmeteo.org/stations/2039/


Figure  4: Loussios  river  cross-section looking downstream.  The numbers give  the flow velocity
(m/s) in the corresponding measurement locations of the cross-section.

The video of the Loussios river was recorded from a bridge over the river with the camera
directed vertically downwards. The video quality was HD (17.6 Mbps), it included 500 frames, the
frame rate was  30 fps,  and the long side  of  the  video was normal  to  the  flow.  The minimum
acceptable correlation was set equal to 0.85, the contrast adjustment parameter 0.9, the maximum
acceptable particle displacement was set equal to 2.0 m/s,  the interrogation area size was 70×50
pixels, the search area was 90×60, and 14 areas were used along the cross-section to track the flow.

The ‘non-reflective  similarity’  transformation was employed in the image registration.  The
required two control  points are shown in Figure  5.  The first  point,  A,  is  set (arbitrarily)  to the
middle of the lower edge of the frame. This is assumed to be the real-world origin. The x-axis is
assumed parallel to the long edge of the frames. This will be the standard practice in all case studies
presented here. The next point, B, is set on the y-axis at a distance of 30 cm from A. This distance on
the image is estimated from the length of a reference object (the forearm of a human, see the lower
right corner in Figure 5).

Figure  5: Loussios  river  case  study.  Flow  velocity  vectors  (arbitrary  scale)  obtained  by  video
processing, and control points (A and B) employed in the ‘non-reflective similarity’ transformation.



The results of the video processing are shown in Figure 5. Assuming positive y-axis upwards
and positive x-axis pointing to the right (along the cross-section in this case study), the average
surface  flow  velocity  vector  is  (vx, vy) = (0.05 m/s,  1.04 m/s).  For  comparison,  the  average  flow
velocity normal to the cross-section, taking into account the current meter measurements at 0 and
20% of the water depth (from the water surface), was found to be 0.95 m/s (no radar measurements
were available for this case study). 

Figure  6 displays  the  histogram  of  the  results  of  the  image  velocimetry  algorithm  (the
component vy). The number of the surface flow velocity vectors obtained by the algorithm was 34.

Figure  6: Histogram  of  the  surface  velocities  obtained  by  the  image  velocimetry  algorithm  at
Loussios.

3.3. Nedousa, upper reaches of Nedontas river

The third case study is from a cross-section in the upper reaches of the Nedontas river, from its
tributary  Nedousa,  Greece  (see  https://openmeteo.org/stations/1487/).  The  shape  of  the  studied
cross-section is displayed in Figure 7. Figure 7 also gives the flow measurements obtained with the
conventional current meter. Using these measurements in equation (1) the discharge is estimated at
3.00 m3/s in the cross-section of area 3.23 m2, and the average velocity is Vav= 3.00/3.23 m/s= 0.93 m/s
(the arithmetic average is 0.91 m/s).

Figure 7: Nedousa cross-section looking downstream. The numbers give the flow velocity (m/s) in
corresponding locations of the cross-section.

https://openmeteo.org/stations/1487/


The  video  of  Nedousa  was  recorded  under  a  bridge,  standing  on  the  right  side  (looking
upstream). The video was recorded in HD (17.3 Mbps), it included 300 frames, the frame rate was
30  fps,  and the  long  side  of  the  video was  parallel  to  the  flow.  For  the  video  processing,  the
minimum acceptable correlation was set equal to 0.8, the  contrast adjustment parameter 0.8, the
maximum acceptable particle displacement was set equal to 3.0 m/s, the interrogation area size was
30×100 pixels, the search area was 80×160, and 20 areas were used along the cross-section to track
the flow.

The ‘projective’ transformation was employed in the image registration. This transformation
requires referencing four points. Figure 8 displays the technique employed to obtain the real-world
coordinates of the control points. Points B and C are the locations where the hydrologist’s right foot
meets the water surface when standing a fully-extended arm length away from the cable. Therefore,
the x-coordinates of these points equal the arm’s length, whereas the y-coordinates are the distances
of the hydrologist from the right side of the bridge (looking upstream). Points A and D lie on the
water surface at distances from the right bridge side equal to those of B and C respectively, but with
x=0 (e.g.,  in Figure  8,  D is  the projection of the hydrologist’s  hand (fist)  on the water  surface).
Having the hydrologist standing this way at two locations across the river flow, the coordinates of
four control points can be obtained. It  is noted that the image velocimetry does not include the
frames with the hydrologist standing to obtain the control points.

The results of the video processing are shown in Figure 8. Assuming that the origin is at the
right cable mount (at the bottom of Figure  8, not visible), the y-axis is along the cable (the cross-
section) and positive upwards, the positive x-axis points to the right, then the average surface flow
velocity  vector  is  (vx, vy) = (– 1.32 m/s, – 0.26 m/s).  The  significant  flow along the  assessed  cross-
section  (vy = – 0.26 m/s)  is  attributed  mainly  to  the  channel  expansion  at  this  location.  For
comparison, the average surface flow velocity normal to the cross-section, taking into account the
current meter measurements at 20% of the water depth (from the water surface), was 1.07 m/s. The
average  surface  flow  velocity  obtained  by  the  hand-held  radar  was  1.33 m/s  (the  three
measurements were 1.6, 1.5, and 0.9 m/s).

Figure  9 displays  the  histogram  of  the  results  of  the  image  velocimetry  algorithm  (the
component -vx). The number of surface flow velocity vectors obtained by the algorithm was 45.

Figure 8: Nedousa case study. Flow velocity vectors (arbitrary scale) obtained by video processing,
and control points (A, B, C, and D) employed in the ‘projective’ transformation.



Figure  9: Histogram  of  the  surface  velocities  obtained  by  the  image  velocimetry  algorithm  at
Nedousa.

3.4. Nedontas river, Kalamata city

The  fourth case  study is  from a cross-section close to the Nedontas river mouth,  in the city of
Kalamata, Greece (the geographic and hydrological information of this location can be found at
https://openmeteo.org/stations/1482/). The shape of the studied cross-section is displayed in Figure
10. Figure 10 also gives the flow measurements obtained with the conventional current meter.Using
these measurements in equation (1) the discharge is estimated at 4.60 m3/s in the cross-section of
area 1.67 m2, and the average velocity is Vav= 4.60/1.67 m/s= 2.75 m/s (the arithmetic average is 2.52
m/s).

The video of the Nedontas river was recorded under a bridge standing on the left side (looking
upstream). The video was recorded in HD (16.2 Mbps), it included 500 frames, the frame rate was
30  fps,  and the  long  side  of  the  video was  parallel  to  the  flow.  For  the  video  processing,  the
minimum acceptable correlation was set equal to 0.81, the  contrast adjustment parameter 0.9, the
maximum acceptable particle displacement was set equal to 7 m/s, the interrogation area size was
50×150 pixels, the search area was 70×250, and 14 areas were used along the cross-section to track
the flow.

Figure 10: Nedontas river cross-section looking upstream. The numbers give the flow velocity (m/s)
in corresponding locations of the cross-section.

https://openmeteo.org/stations/1482/


Figure  11: Nedontas  river  case  study.  Flow velocity  vectors  (arbitrary scale)  obtained by video
processing, and control points (A, B, C, and D) employed in the ‘projective’ transformation.

The ‘projective’ transformation was employed in the image registration. This transformation
requires referencing four points.  Figure  11 displays the technique employed to obtain the real-
world coordinates of the control points. In this case, the control points were selected on concrete
constructions,  so the real-world coordinates of  these points were easily measured.  It  should be
noted that, even though there is no water at points A and B, their elevation is only slightly higher
than the water surface (formally, all control points should lie on the same plane, the water surface).

Figure  12: Histogram  of  the  surface  velocities  obtained  by the  image  velocimetry  algorithm  at
Nedontas.

The results of the video processing are shown in Figure 11. Assuming the origin to be at the left
cable mount (at the bottom of Figure 11, not visible), the y-axis along the cable (the cross-section)
positive upwards and the positive x-axis pointing to the right, then the average surface flow vector
is  (vx, vy) = (3.35 m/s, –0.10 m/s).  The  y-component  of  the  flow  along  the  assessed  cross-section
(vy = – 0.10 m/s) is attributed to the transformation errors and to the poorly positioned cable (i.e., the
cable,  which  is  assumed as  the  real-world y-axis,  was  not  positioned normal  to  the  flow).  For



comparison, the average surface flow velocity normal to the cross-section, taking into account the
current meter measurements at 0 and 20% of the water depth,  was 2.66 m/s. However, it is noted
that in this case the average surface flow velocity is underestimated because no measurements were
taken in the middle part of the cross-section due to the very high flow velocity. The average surface
flow velocity obtained by the hand-held radar was 3.83 m/s (four measurements equal to 3.4, 3.8,
4.3, and 3.8 m/s). It is worth noting that the obtained velocity profile from the algorithm suggests,
similar to the measurements from the hand-held radar, higher velocities near the centre of the cross-
section (Figure 11).

Figure  12 displays  the  histogram  of  the  results  of  the  image  velocimetry  algorithm  (the
component vx). The number of flow vector velocities obtained by the algorithm was 205.

4. Discussion

Pearce et al. [11] have provided a sensitivity analysis of the LSPIV method on the search and
interrogation areas, which they consider to have the greatest impact on the LSPIV method accuracy.
The LSPIV method performance remained acceptable for every tested set of parameters. Pearce et
al.  have  studied also the accuracy of  five image velocimetry methods.  Using the measurements
obtained from the ADCP technique as reference values, they found that the LSPIV method offered
the best accuracy in most applications with an average Nash-Sutcliffe coefficient of 0.5 (compared to
ADCP). It should be noted that according to WMO [4] the ADCP measurements tend to be within
5% of the conventional  measurements,  whereas  the error  of  the conventional  measurements  (if
well-performed) is 3%.

The  case  studies  highlighted  the  following  difficulties  regarding  the  image  velocimetry
methodology:

1. If it is not possible to select control points on solid unmistakable locations, their definition
may be a challenging procedure requiring improvisation.

2. The ‘projective’ transformation is prone to errors in the definition of the control points.
Inaccurate identification of the real-world coordinates of the control points may result in
errors in the estimation of both the magnitude and the direction of the flow vectors.

3. When  the  camera  is  not  far  from  and  parallel  to  the  scene,  i.e.,  when  the  ‘projective’
transformation  (see  Figures  8 and  11)  should  be  used,  areas  closer  to  the  camera  are
recorded with a higher pixel density. Therefore, less reliable information can be derived
from the video for the more distant areas.

4. The motion detection of the video processing algorithm is feasible only if the video has
recorded a flow with easily detectable moving features (requirement of sufficient seeding
density, see [11]). As a rule of thumb, an expert should be able to estimate the flow velocity
by watching the video. If this is not so, the image processing algorithm most probably will
fail to obtain meaningful results from this video.

5. Despite  the  previously  mentioned  disadvantages,  the  videos  requiring  ‘projective’
transformation tend to present a higher effective seeding density, which is essential for the
motion detection.

6. The average flow vector, like every 2D vector, has two scalar components, one parallel and
one normal to the flow. Occasionally, the video processing algorithm may estimate a non-
zero component normal to the flow. If the flow is uniform, this is usually because of errors
introduced by the transformation, especially in the ‘projective’ transformation. This error is
acceptable if the erroneously estimated component normal to the flow has only a minor
impact on the direction and magnitude of the flow velocity vector.

7. The maximum acceptable displacement, the minimum acceptable correlation, the contrast
adjustment parameter, and the interrogation and search area sizes are hyper-parameters
that require expertise to select optimal values.

The data of all 5 cross-sections were analyzed statistically employing equation (2). The results of
this analysis are displayed in Figure 13 and Table 1. 
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Figure  13: Ranking  of  60  distribution  functions  according  to  the  corresponding  value  of  the
Anderson-Darling test.

The lines in Figure  13 appear to  be horizontal  for  a considerable number of distributions.  This
suggests that a wide variety of distributions fit well to the surface velocities (the scalar component
parallel with the flow). During the statistical analysis it was found out that an early jump in these
lines (very few distributions fit well to the data) was an indication of an inappropriate upper or
lower velocity threshold (see plausibility filter in Figure 1).

It  should  be  noted  that  the  minimum  length  that  can  be  measured  in  an  image  is  that
corresponding to one pixel. As a result, the displacements obtained from two successive images are
discretized. In the case of the ‘non-reflective similarity’ transformation, the relation of a pixel to the
real-world length is constant. Then, and because of the discretization, the obtained velocities (the
scalar components of the vector) take values from a limited set, which explains the two gaps in
Figure  3b.  However,  in the ‘projective’  transformation,  the relation of a pixel  to the real-world
length is defined by a scaling factor that depends on the location in the image. As a result,  the
obtained velocities take values from a continuous space.

Table 1: Ranking of the best 10 distribution functions according to the Anderson-Darling
test. 

Loussios Nedontas Nedousa S1 S2

1 Burr (4P) Error Gen. Extreme Value Lognormal (3P) Johnson SB

2 Dagum (4P) Fatigue Life (3P) Log-Pearson 3 Fatigue Life (3P) Erlang (3P)

3 Log-Logistic (3P) Beta Johnson SB Inv. Gaussian (3P) Pearson 6 (4P)

4 Logistic Normal Pearson 6 Normal Gamma (3P)

5 Johnson SU Inv. Gaussian (3P) Pearson 5 Gen. Gamma (4P) Beta

6 Gen. Gamma (4P) Johnson SB Pearson 5 (3P) Pearson 6 (4P) Gen. Gamma (4P)

7 Hypersecant Gen. Gamma (4P) Lognormal (3P) Erlang (3P) Fatigue Life (3P)

8 Beta Gen. Extreme Value Fatigue Life Pearson 5 (3P) Lognormal (3P)

9 Fatigue Life (3P) Lognormal (3P) Inv. Gaussian (3P) Gamma (3P) Burr (4P)

10 Normal Log-Logistic (3P) Lognormal Gen. Extreme Value Weibull (3P)



The non-exceedance probabilities of the surface velocities of the Loussios, Nedousa, and Nedontas
for the corresponding value of  Vav are  25, 18, and  16% respectively.  The average is  20%. It  was
examined  whether  the  20th percentile  of  the  surface  velocity  obtained  from  the  empirical
distribution,  VEMP, and  the best distribution of Table 1,  VDIS, can serve as an estimator of  Vav. The
accuracy of this method was tested against the classical method employed to estimate Vav from the
ratio  Vav/Vsav,  the velocity coefficient, where Vsav is the average surface velocity obtained by the
image  velocimetry  algorithm.  The  established practice  [34]  for  estimating  the  average  cross-
sectional flow velocity from the surface velocity is to assume a velocity coefficient equal to 85%.

Table 2:  Average flow velocity  Vav,  average surface flow velocity Vsav,  estimate  of  Vav based on
0.85 Vsav, 20th percentile of the empirical distribution VEMP and the theoretical VDIS, and relative errors
of the these three estimators.

Case study Vav

(m/s)
Vsav

(m/s)
0.85 Vsav

(m/s)
VEMP

(m/s)
VDIS

(m/s)
Error 0.85 Vsav

(%)
Error VEMP

(%)
Error VDIS

(%)

Loussios 0.89 1.04 0.88 0.82 0.83 -1 -8 -7

Nedousa 0.93 1.32 1.12 1.06 1.04 20 14 11

Nedontas 2.75 3.35 2.85 2.65 2.58 4 -4 -6

The  errors of these three  estimators are displayed in Table 2. The last  three columns (the error is
calculated from the formula Vest ⁄ Vav – 1, where Vest is either 0.85 Vsav, or VEMP, or VDIS) suggest that,
judging  from  all  three  case  studies,  our  method  is  slightly  advantageous  (lower  uncertainty
regarding  the error,  although  this  is  based  on  just  3  case  studies).  The  use  of  the  theoretical
distribution instead of the empirical distribution offers a minor improvement.  However, since the
former requires  specialized  commercial  software,  the  use  of  the  empirical  remains  a  good
alternative. 

5. Conclusions

This study presented an image velocimetry algorithm. The algorithm was tested in four case
studies with different camera angles. The algorithm has been implemented in MATLAB code (also
compatible with the open-source platform Octave). The results of the case studies indicate that this
algorithm  provided  a  good  estimation  of  the  surface  flow  velocity  (both  the  magnitude  and
direction), and the profile along the cross-section. Furthermore, though not extensively examined,
the algorithm appears to be faster than other interpreter-based tools.

The presented tool, which is freely available, provided reliable estimations of the surface flow
velocities in the case studies of this work. An alternative approach for estimating the average flow
velocity of the cross-section was examined. This approach employs the surface velocity of 20% non-
exceedance probability. This methodology appeared promising when LSPIV was applied to videos
with high  seeding density. These findings should be tested more extensively in a series of case
studies with a variety of conditions to identify their potential in field applications.
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